Advancing carbon fiber composite inspection : deep learning-enabled defect localization and sizing via 3-Dimensional U-Net segmentation of ultrasonic data

McKnight, Shaun and Tunukovic, Vedran and Pierce, S. Gareth and Mohseni, Ehsan and Pyle, Richard and MacLeod, Charles N. and O’Hare, Tom (2024) Advancing carbon fiber composite inspection : deep learning-enabled defect localization and sizing via 3-Dimensional U-Net segmentation of ultrasonic data. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 71 (9). pp. 1106-1119. ISSN 0885-3010 (https://doi.org/10.1109/tuffc.2024.3408314)

[thumbnail of McKnight-etal-2024-Advancing-carbon-fiber-composite-inspection]
Preview
Text. Filename: McKnight-etal-2024-Advancing-carbon-fiber-composite-inspection.pdf
Accepted Author Manuscript

Download (1MB)| Preview

Abstract

In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.

ORCID iDs

McKnight, Shaun, Tunukovic, Vedran ORCID logoORCID: https://orcid.org/0000-0002-3102-9098, Pierce, S. Gareth ORCID logoORCID: https://orcid.org/0000-0003-0312-8766, Mohseni, Ehsan ORCID logoORCID: https://orcid.org/0000-0002-0819-6592, Pyle, Richard ORCID logoORCID: https://orcid.org/0000-0002-5236-7467, MacLeod, Charles N. ORCID logoORCID: https://orcid.org/0000-0003-4364-9769 and O’Hare, Tom;