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Abstract— In Non-Destructive Evaluation (NDE), 
accurately characterizing defects within components 
relies on accurate sizing and localization to evaluate the 
severity or criticality of defects. This study presents for 
the first time a deep learning methodology using 3-
Dimensional (3D) U-Net to localize and size defects in 
Carbon Fibre Reinforced Polymer (CFRP) composites 
through volumetric segmentation of ultrasonic testing 
data.  Using a previously developed approach, synthetic 
training data closely representative of experimental data 
was used for the automatic generation of ground truth 
segmentation masks. The model’s performance was 
compared to the conventional amplitude 6 dB drop 
analysis method used in industry against ultrasonic 
defect responses from 40 defects fabricated in CFRP 
components. The results showed good agreement with 
the 6 dB drop method for in-plane localization and 
excellent through-thickness localization, with Mean Absolute Errors (MAE) of 0.57 mm and 0.08 mm, respectively. 
Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop 
method. However, when a correction factor was applied to account for variation between the experimental and 
synthetic domains the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop 
technique.  

By working with volumetric ultrasonic data (as opposed to 2D images) this approach reduces pre-processing 
(such as signal gating) and allows for the generation of 3D defect masks which can be used for the generation of 
computer aided design files; greatly reducing the qualification reporting burden of NDE operators.  

Index Terms— Ultrasonic Testing, Segmentation, Three-Dimensional, U-Net, Composite, Deep Learning, Defect 
Characterization 

  

I. INTRODUCTION 

omposite materials find extensive application within the 

aerospace, marine and civil engineering sectors, with 

Carbon Fiber Reinforced Polymers (CFRP) being one of the 

most prominent. In recent commercial aircraft developments, 

such as the Airbus A350 and the Boeing 787, CFRP constitutes 

more than 50% by weight of the final structures. This 

prevalence extends to private jets and helicopters, where CRFP 

can even reach utilization of 70-80% by weight [1], [2]. CFRP's 

production involves the layering of multiple carbon ply sheets, 

preforming, and subsequent curing using a thermoset polymer 
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in a mold. The inherent anisotropy of these composites, caused 

by the direction of fiber filaments in the fabrics’ weaving 

patterns and components’ layup sequences, allows for them to 

be engineered to meet precise structural requisites, rendering 

them ideal for high-performance applications at markedly 

reduced weight [3], [4], [5], [6], [7], [8], [9], [10], [11]. The 

complexities associated with manufacturing of these 

components can introduce defects, limiting both structural 

integrity and performance [3], [4], [6], [9], [10], [12], [13]. 

These defects encompass a broad spectrum, spanning from 

delamination and cracks to foreign object inclusions, ply 

stacking errors, fiber distortions, and porosities [8], [13]. Given 

the increasing use of composites in safety-critical components, 

the identification, characterization, and quantification of 

1Sensor Enabled Automation, Robotics, and Control Hub (SEARCH), 
Centre for Ultrasonic Engineering (CUE), Electronic and Electrical 
Engineering Department, University of Strathclyde, Glasgow, UK 

2Spirit AeroSystems, Belfast, UK 

Advancing Carbon Fiber Composite Inspection: 
Deep Learning-Enabled Defect Localization and 
Sizing via 3-Dimensional U-Net Segmentation of 

Ultrasonic Data 
Shaun McKnight1*, Vedran Tunukovic1, S. Gareth Pierce1, Ehsan Mohseni1, Richard Pyle1, 

Charles N. MacLeod1, Tom O’Hare2 

C 



SHAUN MCKNIGHT et al.: ADVANCING CARBON FIBER COMPOSITE INSPECTION: DEEP LEARNING-ENABLED DEFECT LOCALIZATION AND SIZING VIA 3-
DIMENSIONAL U-NET SEGMENTATION OF ULTRASONIC DATA
 
2 

 

defects is of paramount importance [6]. 

Non-Destructive Evaluation (NDE) encompasses an array of 

methodologies employed for the examination of components, 

without impacting their structural integrity. Radiography, 

thermography, electromagnetic approaches, and ultrasound 

stand out as some of the most prevalent NDE techniques. The 

selection of the most fitting NDE technique hinges upon the 

inherent characteristics of the component in question, logistical 

requirements of the inspection, and the specific defects targeted 

for detection.  

Ultrasonic Testing (UT) has found widespread adoption and 

standardization for volumetric inspections of composite 

components within the aerospace industry. UT's capabilities 

encompass the detection of a diverse array of volumetric 

defects [4], [8], [11], [12] whilst being comparatively 

straightforward to implement and free from hazards when 

compared to radiography. UT draws its foundation from the 

transmission, propagation, and reception of ultrasonic waves. It 

is generally used for volumetric inspection where a sound wave 

is excited on a component's surface. These waves travel 

through the material, with the resulting internal reflections and 

scatterings offering valuable insights into the component's 

volumetric integrity. 

Phased arrays are often the technology of choice for 

transmission and reception of acoustic waves, primarily due to 

their operational flexibility, larger coverage area, and reduced 

inspection times. Phased arrays are constructed from 

independently controllable ultrasonic transducers positioned in 

an array or matrix formation, allowing for a range of electronic 

scanning and imaging capabilities such as beam steering, 

dynamic depth focusing, and variable sub-apertures [10]. The 

addition of a roller tire material enables the movement of the 

unit across the surface of different samples, achieving direct 

coupling without posing the risk of damaging the array. This is 

facilitated by positioning the ultrasonic transducers in the 

center of rotation of the tire, which is filled with liquid to 

promote ultrasonic propagation. Subsequently, phased arrays 

are widely used in industries such as aerospace and energy [14], 

[15]. 

With control of each individual element or sub-aperture within 

a linear phased array, depth-wise sectional images, referred to 

as B-scans, can be generated from a single array (Figure 1). 

When combined with mechanized scanning conducted 

perpendicular to the linear phased array's length, three-

dimensional (3D) volumetric scan data can be produced. This 

is achieved by stacking multiple individual B-scans at known 

positions. Volumetric ultrasonic data is frequently summarized 

in the form of images. These images can be obtained by 

selecting a single B-scan or by generating amplitude and time-

of-flight C-scans. In the case of C-scans, the image represents 

a top-down sectional view of the sample, with the choice of 

either displaying the maximum response amplitude or the time 

index of the maximum response amplitude within the volume 

[16].  

 

Figure 1: Demonstration of how individual probe elements comprise a linear 

phased array for production of B-scan and C-scan images. 

The incorporation of robotics into NDE has ushered in a 

revolution in the inspection of large-scale components through 

increased automation [17]. Robotic scanning, compared to 

manual scanning, offers enhanced positional accuracy, 

repeatability, and substantially reduces the time required for 

scans, with previous systems demonstrating impressive 

scanning rates of 25.3 square meters per hour [18]. However, 

the analysis of results in industrial settings remains a laborious 

manual and time-intensive task. This necessitates the presence 

of highly trained and certified NDE operators to ensure results 

are in line with established standards [11], [19], [20], [21], [22], 

[23]. Human interpretation presents two drawbacks, namely, 

poor time efficiency and the risk of human error [21]. 

Therefore, research and development of automated data 

interpretation methods which can complement human 

interpretation would enhance the efficiency and reliability of 

NDE. By diminishing reliance on human interpretation, 

automation has the potential to bolster the consistency, 

repeatability, and traceability of NDE processes while 

concurrently trimming inspection durations and costs. 

An automated NDE data interpretation and reporting pipeline 

can be broken down into distinct sections which in many cases 

will flow sequentially, as presented in Figure 2. In most 

settings, defect detection is the primary task to be completed. 

Once defects are detected it is important to evaluate their size 

against acceptance criteria. In some applications the acceptance 

criteria will vary depending on the defect type, orientation, and 

location, so the identification of different defect types and the 

location in the geometry is also important. In an industrial 

setting it is crucial to report on the NDE findings for traceability 

and to allow for downstream testing, design decisions, and re-

work. It is therefore not acceptable to just detect a defect. 

Defects must be evaluated to extract as much information about 
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Highlights 

• 3D U-Net is employed to segment defects in volumetric ultrasonic responses, giving accurate sizing and 3D 
localization information. 

• When accounting for the difference between the experimental and synthetic domains, the segmentation masks 
improved on the industrial 6 dB drop sizing method by a 35% reduction in MAE. 

• This work provides a solution to address the industrial need for automated defect characterization, by using 
synthetic data to train a 3D U-Net. 
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the defect as possible, such as sizing, type, localization etc. 

[24]. This is covered by the characterization and quantification 

section of the pipeline (Figure 2). Whilst there is potential for a 

single end-to-end model/system to complete the whole 

interpretation process, by breaking the tasks up it will allow for 

greater model testing and improved understanding and 

comparison/agreement to human operators. Breaking down the 

data interpretation process into separate tasks not only enables 

comprehensive model testing but also provides valuable 

insights into how errors propagate through the system. This 

decomposition allows for a more nuanced evaluation, shedding 

light on the strengths and limitations of each component of the 

analysis. Additionally, the isolation of specific tasks enhances 

the ability to discern how errors manifest at different stages, 

making it possible to facilitate a more effective comparison and 

agreement with human operators. Their expertise can be 

leveraged to refine and optimize each element. This stepwise 

methodology ensures a thorough assessment of the entire 

system and establishes a foundation for collaborative decision-

making between automated systems and human operators. 

Moreover, this modular approach enhances the system's 

adaptability to different requirements, allowing for 

customization and optimization based on specific application 

needs. 

 
Figure 2: Potential automated data interpretation pipeline. 

Much of NDE automation research focuses on defect detection, 

often overlooking the burden placed on NDE operators for 

report generation. By analyzing and segmenting complete 

ultrasonic volumes of a sample, this work focuses on defect 

sizing and 3D localization, which can be used directly when 

evaluating defects against accept/reject criteria and provide 

accurate defect positional information. This information is 

valuable in supporting downstream manufacturing processes 

such as potential material re-work to repair defects, and quality 

report generation through the automated creation of computer-

aided design files or digital twins of inspected components 

[25], [26]. 

Accurate defect sizing is a key metric in determining if a 

component is safe against standardized acceptance criteria. The 

6 dB drop method is a widely accepted method for defect sizing 

and is commonly used in industrial standards [27]. The 

technique relies on the utilization of a single transducer and the 

peak amplitude from the defect response to determine the 

boundaries of a defect response by detecting the point at which 

the transducer is directly over the edge of the defect as 

determined by a 50% energy dissipation from the reflector, 

manifesting as a 6 dB reduction in amplitude as indicated in 

Figure 3. The method benefits from being based on physical 

properties and is fully explainable. The 6 dB drop is often 

extended and applied to amplitude C-scans and phased arrays 

for thresholding defect areas [28], [29], [30]. Whilst the 6 dB 

drop method is widely established it does have limitations. 

Primarily, the defect must be larger than the acoustic beam to 

get an accurate value for the peak response amplitude [28]. In 

addition, real defect responses generally do not follow the ideal 

defect response curve, often leading to under sizing defects 

[31]. To combat this, alternative amplitude drop thresholds are 

used in different industrial settings [27], [32]. These are often 

component specific and require experimental determination.  

Several works focused on sizing of defects captured with UT 

by using methods alternative to 6 dB drop. Li et al. proposed a 

method which utilized a generalized regression neural network 

and took additional features into account to provide dynamic 

thresholding of a C-scan image for more accurate defect sizing 

than the 6 dB drop method [33]. Niu and Srivastava [34] 

successfully sized and characterized cracks in load bearing 

structures using an DL approach from A-scan data.  Study 

detailed in [35] also employed DL to characterize sizes and 

orientation of cracks in pipes from plane wave imaging data. 

Lardner et al. [36] proposed an automated approach to 

determine defect size and depth from ultrasonic data captured 

from pressure tubes used in nuclear sector. The sizing was 

achieved through a 6 dB drop while the depth estimation was 

done by examining data from several sensors. Whilst the 6 dB 

drop can be used for in-plane defect localization, depth-wise 

localization requires information from the time trace signal. 

Cheng et al. showed a promising method for depth localization 

of defects in CFRP panels using different Deep Learning (DL) 

approaches [37] with A-scan signals. They reported a minimum 

depth relative error of 8% for the hybrid CNN-LSTM.  

However, the aforementioned works base their analysis on 

parts of the captured UT signal instead of the full volumetric 

data. 

 
Figure 3: Demonstration of the 6 dB drop method for defect sizing. a) 

Finding maximum defect response. b) Using the 6 dB loss in maximum 

amplitude to locate one edge of the defect. c) The corresponding defect edge 

detected using the 6 dB drop to determine the defect length. 

DL models present an avenue for advancing the automation of 

NDE data interpretation, and are becoming more prevalent in 

the literature, especially in the context of defect detection when 

dealing with images or A-scans [23]. DL is particularly well 

suited to addressing challenging automation tasks, where a 

traditional method may not be available, such as defect 

characterization and quantification. There are several examples 

of DL models demonstrating the ability to exceed human 
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performance in certain situations [38], [39]. DL solutions 

geared toward automating the interpretation of UT results, 

which integrate with robotic inspection systems, have the 

potential to elevate the quality and efficiency of inspections of 

large components. Such advancements would yield a reduction 

in data interpretation time and a broader adoption of automated 

NDE practices in aerospace and various other industries. 

While the application of DL techniques in ultrasonic signal 

analysis for composite components holds promise, its 

widespread utilization has remained relatively constrained [23]. 

One of the primary hurdles impeding advancements in this field 

is the lack of training data. This scarcity, coupled with industry 

apprehensions regarding the interpretability and lack of 

relevant standards, has posed challenges to the effective 

integration of DL techniques. 

While existing DL methods in the literature primarily utilize 

data formats that are readily interpretable by humans, such as 

images, it is important to note that DL algorithms are not 

constrained to image-level analysis alone. They have 

demonstrated remarkable capability in interpreting complex 3D 

volumetric data [40], [41], [42]. 

This work extends the authors previous work where a DL 

solution was utilized for the detection of defects from 

volumetric UT data. The previous work detailed data 

processing and the use of synthetic data generation along with 

domain specific augmentations to help bridge the simulation to 

experimental domain gap. Synthetic datasets play a pivotal role 

in DL to bolster small training datasets [43]. They have 

demonstrated their efficacy in UT of composites, particularly 

in the classification of C-scan images, yielding promising 

outcomes over simulated data alone [44]. In the previous 

volumetric defect detection work synthetic datasets are 

generated through simulations facilitated by semi-analytical 

physics-based software (CIVA [45]), known for its ability to 

generate experimentally precise defect responses [46], [47]. 

This software provides a more computationally efficient 

alternative to Finite Element Analysis (FEA), enabling the 

simulation of composite responses based on bulk material 

properties [48]. Whilst these concepts are introduced and 

discussed in this manuscript, for further details and 

visualizations the reader is referred to the prior work [42].  

This paper presents an alternative method for defect sizing 

using 3D U-Net for volumetric segmentation of ultrasonic data, 

evaluated against the established 6 dB drop method. U-Net is a 

DL model, introduced in 2015, which proposed an architecture 

for medical two-dimensional (2D) image segmentation [49]. 

Despite advances in computer vision the U-Net architecture is 

still widely popular and shows impressive results in many 

different segmentation tasks [50]. Çiçek et al. [51] extended the 

original U-Net paper for 3D segmentation of highly variable 

kidney volumes, giving 3D U-Net, which showed impressive 

results. By incorporating algorithms with the capability to 

interpret volumetric data, it ensures that all spatial and depth 

wise information is preserved. This approach provides the 

model with more pertinent features to learn from and eliminates 

the necessity for image pre-processing and gating. 

Furthermore, it enables comprehensive 3D defect localization, 

a key focus of this study. To the best of the authors' knowledge, 

this marks the first utilization of a 3D U-Net for sizing and 

localization of defects in volumetric ultrasonic testing data, 

offering several advantages: 
 

- Reduced pre-processing times as no thresholding, 

gating, or generation of images is needed.  

- Results of the developed model trained exclusively 

on synthetic datasets, outperform industry standard 6 

dB drop method for sizing by 35% on experimental 

test data. 

- Complete localization of defects within 3D space. 

Which enables easy extraction of data for 

downstream processes i.e. testing with Finite 

Element Analysis. 

Section II of the paper provides information on the collection 

of experimental test data, the generation of synthetic training 

data, and the creation of ground truth segmentation masks. It 

also covers signal processing and the augmentation applied 

during training. In Section III, the network architecture, 

training specifics, and the reference 6 dB drop method for 

sizing are detailed. The results and discussion are presented in 

Section IV, which is divided into localization and sizing.  

II. EXPERIMENTAL TEST DATA AND SYNTHETIC TRAINING 

DATA 

Synthetic data was used to train the 3D U-Net model in a fully 

supervised manner without the need for any experimental 

training data. The trained model’s performance was evaluated 

against a fully experimental test dataset. 

A. Experimental Data  

Experimental ultrasonic data was acquired from two separate 

CFRP samples, with artificially introduced defects, to serve as 

test data. Delamination’s are one of the most common defect 

types in composites [52] and a major life-limiting failure mode 

[53]. To imitate delamination defects and act as reference 

defects of known sizes, Flat-Bottom Holes (FBHs) were drilled 

from the backside of the samples up to known depths from the 

clean surface. FBHs are often used for this application, as 

detailed in [54].  

Spirit AeroSystems provided composite samples with 

dimensions of 254.0 x 254.0 x 8.6 mm (width x depth x height). 

These samples were manufactured in compliance with the 

BAPS 260 specification, utilizing woven fabric and Cycom 890 

resin through a vacuum-assisted resin transfer molding process. 

The first sample was characterized by the presence of 25 FBHs, 

each possessing diameters of 3.0, 4.0, 6.0, 7.0, and 9.0 mm. 

These holes were drilled to depths of 1.5, 3.0, 4.5, 6.0, and 7.5 

mm from the front surface. These distinct defect sizes were 

spaced at intervals of 30 mm from one another, with variations 

in depth defects positioned 35 mm apart. The second sample 

featured 15 FBHs, all of which were drilled to the same depths 

as those in the first sample. However, the defect diameters for 

this sample were limited to 3.0, 6.0, and 9.0 mm. The 

manufactured defects adhered to tolerances of +/- 0.3 mm in 

depth and +/- 0.2 mm in diameter. 

The acquisition of ultrasonic data involved an unfocused linear 

phased array, deployed on a robotic system. The array used was 
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the Olympus Inspection Solutions RollerFORM-5L64 [55], 

featuring a central frequency of 5 MHz, 64 elements with a 0.8 

mm pitch and an elevation of 6.4 mm. A 4-element sub-aperture 

was employed during the electronic scan, resulting in a total of 

61 beams (A-scans) sampled 100 MHz rate. Each array element 

was powered at 80 V with a receiver gain of 22.5 dB via a 

PEAK NDT MicroPulse [56]. 

Data collection was performed using a pulse repetition 

frequency configured to obtain a B-scan every 0.8 mm, and the 

scanning speed was set at 10 mm/s. The imaging step size of 

0.8 mm was chosen to align with the pitch of the employed 

phased array, ensuring that the captured data results in equal 

spatial aspect ratios. While reducing the imaging step size 

could theoretically lead to a more detailed and precise 3D scan, 

it comes with certain trade-offs. A smaller step size would 

result in increased data volume, leading to high correlation 

between individual B-scans, minimal practical improvements 

in capturing defective areas, an adjustment for skewed aspect 

ratios, and greater data storage requirements. Conversely, 

increasing the imaging step size beyond 0.8 mm would lead to 

less data being captured, potentially resulting in the oversight 

of smaller defects, and decreased overall scan accuracy. The 

scanning process was under the precise control of a fully 

automated robotic system based on a KUKA KR 90 R3100 

extra HA industrial robot [57]. This method allowed for the 

concatenation of encoded B-scans to generate volumetric 

ultrasonic data. For this study, the errors associated with robotic 

movement and positioning were deemed negligible as the 

utilized industrial manipulator boasts a pose repeatability of ± 

0.06 mm according to the ISO 9283 standard. This level of 

precision far exceeds the best resolution achievable with the UT 

setup, which is limited to 0.8 mm due to the pitch between 

individual ultrasonic elements. 

To maintain a consistent coupling of the roller-probe’s tire to 

the component's surface and to ensure uniform transfer of 

acoustic wave energy into the sample at each scan position, a 

force-torque sensor’s real-time feedback was employed for 

robotic pose compensation. This mechanism regulated the 

distance (through contact force) between the sample's surface 

and the probe using feedback from the force axis perpendicular 

to the sample. It was executed through the integration of a 

Schunk GmbH & Co. FTN-GAMMA-IP65 SI-130-10 force-

torque sensor, installed between the robot's flange and the 

roller-probe [57]. This setup targeted a constant scanning force 

of 70 N, preserving complete tire compression during the entire 

scanning process. Throughout the data acquisition process, 

water sprayed between the roller form’s tire and the 

component’s surface served as the acoustic couplant. This data 

collection setup aligns with setups in industry and has been 

widely adopted for the acquisition of data on large composite 

aerospace components [15]. 

B. Synthetic Data  

Due to the scarcity of available experimental training data, a 

simulated dataset was generated for model training. This 

process was facilitated using CIVA, a semi-analytical physics 

based commercial NDE simulation software [45]. CIVA 

possesses the capability to accurately simulate wave 

propagation and its interactions with defects, a feature that has 

been experimentally validated for UT [46], [47]. Moreover, it 

offers computational efficiency when contrasted with 

alternative methods such FEA. Specifically, while a single 

ultrasonic volume was generated in less than 2 minutes using 

CIVA, the same task took over 60 times longer with FEA. The 

software allowed for comprehensive control over the simulated 

domain, thus enabling the modelling of defects and material 

properties closely resembling those found in the experimental 

domain. However, it is important to note that the utilization of 

semi-analytical software like CIVA came with certain 

limitations, such as restrictions to the defect geometry that can 

be modelled using a parametric study. Furthermore, the 

software, lacked the capacity to simulate responses arising from 

interactions within ply layers and was incapable of reproducing 

the noise observed in experimental data [44]. Consequently, 

disparities emerged between the simulated and measured 

experimental domains. To mitigate these disparities, a set of 

synthetic data generation procedures were employed to better 

align the synthetic and experimental domains. For further 

details into the distinctions between the simulated and 

experimental domains and the underlying rationale for the 

generation of more accurate synthetic data, please refer to prior 

work dedicated to this subject [44]. 

The simulation was configured with the composite material's 

individual layers created and employed to compute the 

equivalent homogeneous material properties resembling those 

of the experimental CFRP samples. A single ply layer was 

synthesized and replicated with alternating orientations of 0, 

45, -45, and 90 degrees. This replication was intended to 

closely mimic the composition of the experimental sample. The 

outcome of this process was a multilayer structure, which was 

further homogenized to emulate a uniform medium with 

mechanical properties consistent with those of the multi-ply 

composite. To achieve this consistency, the fiber density was 

adjusted to 50%, matching it as closely as possible with the 

experimental sample's density of 1440 kg/m³. 

To conduct multiple sequential simulations, a parametric study 

was established. In this study, the composite's bulk properties, 

which were previously computed, were kept constant, while the 

diameter and depth of defects were systematically varied. 

Specifically, FBH defects were simulated with diameters 

ranging from 3.0 mm to 15.0 mm, incremented by 0.5 mm. The 

depths of these defects varied from 1.5 mm to 7.0 mm from the 

surface, increasing in increments of 1.5 mm. In the simulations, 

both the reflections from the front and back walls were 

considered. The entire set of simulations were completed 

within a relatively short timeframe, requiring less than 15 hours 

to run on a workstation equipped with a 24-Core 3.79 GHz CPU 

and 128 GB of memory. 

Previous research findings have underscored the limitations of 

relying solely on semi-analytical simulated data to faithfully 

replicate the experimental domain signals for model training 

[44]. Consequently, there arises a critical need for approaches 

that can effectively bridge the gap between simulated and 

experimental data. Fully statistical methods for introducing 

noise offer distinct advantages as they allow for continuous re-

sampling, ensuring the generation of unique noise profiles that 

closely mirror real experimental data. Figure 4 provides a 

visual representation of the process of introducing synthetic 
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noise to an entire ultrasonic volume. The statistical 

characteristics of the noise distributions in the A-scans were 

derived from an independent holdout sample featuring the same 

layup and thickness as the test samples.  

a)  b)  

 

 

 

 
Figure 4: a) Complete ultrasonic volume of simulated A-scans for a defect 

response. b) the corresponding synthetically noised volume for the same 
defective response (opacity has been adjusted to allow for visualization of the 

defect through the noise). Color mapping and axes are given in Figure 5. 

Table 1 provides a summarized description of the datasets 

created from both the experimental and synthetic data sources. 
Table 1: Summary of the datasets produced.  

Data source Dataset 
Number of 
datapoints 

Simulated defect responses 

(300 Flat-Bottom Holes) 

Synthetic defective || 

Train (80%) 
240 

Synthetic defective || 
Validation (20%) 

60 

Experimental defect 

reference sample 

(25+15 Flat-Bottom Holes) 

Sample 1 ~ Diameters: 

3, 4, 6, 7, 9 mm || Test 
25 

Sample 2 ~ Diameters: 

3, 6, 9 mm || Test 
15 

C. Signal Processing  

The resolution of the UT data in the array dimensions was 

constrained by the number (61) of acoustic beams. Padding was 

used to expand this dimension to 64 to amount to a power of 

two. To match this, 64 B-scans were selected in the scan 

dimension to create cuboidal datasets. The distance between the 

array elements was 0.8 mm, and the robotic scanning speed was 

regulated with the pulse repetition frequency to ensure a B-scan 

offset of 0.8 mm. Consequently, this approach enabled the 

generation of volumetric data with square voxels in the spatial 

domains, along the probe axis and the scanning direction. This 

resulted in a standardized volumetric resolution that remained 

consistent throughout the entire dataset. 

The data obtained from both the experimental and simulated 

domains was in the form of radio frequency A-scans, also 

known as amplitude scans. To transform these signals into 

volumetric datasets, a series of signal processing procedures 

were applied. Initially, the A-scans were adjusted to have a 

center at zero amplitude and were then enveloped by 

calculating the absolute value of the Hilbert transform. This 

envelope is a valuable tool for determining the instantaneous 

response within a time series and is widely used when 

generating an envelope for the creation of C-scan images from 

ultrasonic A-scans [58]. After enveloping the signal, each 

volumetric dataset was normalized to fit within a range from 0 

to 1. This was achieved by dividing every data point by the 

maximum peak amplitude present from each sample. 

Following envelope calculation and normalization, corrections 

were applied in the time domain to align the peak front wall 

response with the temporal origin. This step ensured temporal 

alignment of features and accommodated any variations in the 

acoustic path length between individual transducers and the 

sample's surface caused by the probe’s varying tire 

compression. For further details on the time-shifting process for 

an individual A-scan, in conjunction with the application of the 

envelope transformation, please refer to previous work which 

has demonstrated this [42]. Figure 5 shows the effect of this 

alignment on the complete ultrasonic volume.  

a) 
 

b)  

 

 

 

 

Figure 5: a) Enveloped volumetric data only. b) Volumetric data with time 

shifting to the central response of the front wall peak. Both figures have been 

thresholded to remove the lowest 10% of amplitudes to aid in visual clarity. 

D. Mask Generation 

An important advantage of employing simulated data as the 

foundation for training datasets lies in the capacity to have full 

control over the simulation input parameters. This control can 

be harnessed for the automated generation of ground truth 

masks during the training process, a task that would pose 

challenges when training models on experimental data. In the 

context of this study, defect diameter and depth were utilized 

to create segmentation masks for defects with a nominal 

thickness. Figure 6 provides an illustration of a ground truth 

defect mask alongside its corresponding simulation. 
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Ground Truth Segmentation Mask Simulated Response 

  
Overlayed Response/Mask 

 
Figure 6: (a) The ground truth segmentation mask and (b) the corresponding 
simulated defect response. The overlay of both the mask and response is 

shown in (c). Color mapping and axes are given in Figure 5. 

E. Augmentation 

The generalizability of ML models is a critical aspect of their 

performance and accounts for differences in the source and 

target domain. Augmenting the training data improves model 

generalizability by adding noise at the training stage, reducing 

the likelihood of overfitting. This often improves performance 

in the target domain particularly when the target (experimental) 

domain is different from the source (synthetic) domain.  

In this study, two domain-specific augmentation techniques 

that have shown their effectiveness in previous research [42] 

were employed during training. Standard computer vision 

augmentation methods (e.g. mix-up, cut mix etc.) do not 

translate directly to UT data as they would impact the 

underlying signal response. The first type of augmentation is 

concerned with response magnitude. Magnitude can vary due 

to various factors unaccounted for in the simulation, such as 

manufacturing variances in the sample and the UT array probe, 

wear on the probe and its electrical connections, and the 

complexities of sound wave scattering between layers. To 

replicate these variations while maintaining the appropriate 

data normalization, the amplitude of each A-scan was adjusted 

by a constant factor beyond the front wall. This factor was 

randomly selected from a uniform distribution, resulting in a 

scaling factor ranging from 80% to 120%.  

The second augmentation method aims to replicate phase 

aberration - the variations in ultrasonic travel time between 

elements [59]. These variations can result from a range of 

factors, including fluctuations in the sound speed of composite 

materials due to their anisotropic properties, and deviations 

from the central frequency for specific elements. To simulate 

phase aberration, a 1-D interpolation technique was employed 

to randomly stretch or compress the signal in the time domain. 

The extent of dilation was randomly determined from a uniform 

distribution for each A-scan, allowing for dilation of up to ±300 

ns. 

The objective in implementing these augmentation methods is 

to enhance the models’ ability to generalize effectively within 

the experimental domain. The convenience of real-time 

augmentations allows for their integration into the training 

process, eliminating the need for additional data collection or 

preprocessing steps. To maintain consistent data length in the 

time domain, each A-scan was extended by zero padding, 

resulting in a length of 1024 samples during training. 

Subsequently, to mitigate computational demands, each 

volume was down sampled in the time domain by a factor of 4. 

III. SEGMENTATION METHODS 

A. Model: Architecture and Training 

In this paper, volumetric segmentation was carried out through 

the training and deployment of a customized 3D U-Net 

architecture. The design of the architecture drew inspiration 

from [51] but extended to five convolutional blocks with a 

sigmoid layer applied to the output. Models of varying number 

of blocks were tested, and the inclusion of an additional 

convolutional block resulted in a 40.8% reduction in validation 

loss. Further optimization of hyperparameters and architecture 

may result in a performance increase, however this was outside 

the scope of this work. A graphical representation of the 

overarching architectural design is presented in Figure 7. 

 

 
Figure 7: Architecture diagram for the 3D U-Net. Blue boxes depict the 

feature maps. The number of channels and dimensions of the data (probe × 

scan × time) are denoted above and to the side of each feature map 

respectively. 

The model was trained on synthetic datasets with the 

corresponding defect masks generated from the previously 

defined parameter space (Figure 6). The model was trained with 

a batch size of 8, a patience of 3 epochs, and a learning rate of 

0.003. During training, binary cross-entropy loss was employed 

in conjunction with an Adam optimizer [60], which was 

parameterized with the default parameters given in the original 

paper  β  set to 0.9 and β  to 0.999  and a learning rate of 

0.003. Training and testing of the models were conducted using 

a desktop Windows 11 PC with Nvidia RTX 3090 Ti GPU, 128 

GB RAM, and two Intel® Xeon® Gold 6428 2.50 GHz CPUs. 

The PyTorch 1.13.1 library and Python 3.10.8 were used for 

coding. Overall training took less than 20 hours. For the 

subsequent testing phase, the model exhibiting the lowest 

validation loss at the 47th epoch. 

B. Reference Metric: 6 dB Drop Sizing 

The 6 dB drop criterion represents the prevailing industrial 

methodology for defect sizing, as documented in the literature 

[29], [30]. The underlying principle of this method relies on the 

utilization of a single transducer to pinpoint the edge of a defect 

response by detecting the moment when exactly 50% of the 
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energy is reflected by the defect, corresponding to a 6 dB 

decrease in amplitude [27]. The technique is repeated on the 

opposing boundary of the defect, and the resultant displacement 

results in the measured defect's length (Figure 3). This 

fundamental principle can be further extended to encompass 

the sizing of defects from amplitude C-scan images produced 

from employing phased array transducers [28], [29], [30]. 

In this research, sizing in the fiber plane using the 

segmentations predicted by the U-Net model are compared 

with the established 6 dB drop. Given the prior knowledge of 

the manufactured defects present in the reference sample, 

recognized as circular FBHs, and to mitigate variations in 

diameters through the component thickness, the defect 

diameters were computed based on the maximum segmented 

area through the depth of the sample, based on pixel 

summation, using the formula outlined in equation 1. 

 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2
√

∑ ( Max
𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑑𝑒𝑝𝑡ℎ

(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒))𝑝𝑖𝑥𝑒𝑙𝑠

𝜋
 

(1) 

IV. RESULTS AND DISCUSSION 

Figure 8 presents examples of experimental defect responses 

and their corresponding segmentation masks as generated from 

the 3D U-Net. Along with demonstrating results, these 

visualizations could be used by human operators to sense-check 

the models’ predictions and reject inaccurate model predictions 

easily, providing the possibility for the method to contribute to 

a human-in-the-loop semi-autonomous NDE system.  
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Figure 8: For two example defects their thresholded experimental ultrasonic 

responses (amplitudes >10% of maximum response for visualization of the 

defects), and their corresponding predicted segmentations. Color mapping 

and axes are given in Figure 5. 

A. Localization 

The localization of defects in 3D can be deconstructed into two 

primary components: in-plane localization and through-

thickness depth-wise localization. It is important to note that 

the widely adopted 6 dB drop criterion only addresses in-plane 

localization and it does not provide information regarding 

depth-wise localization. 

The 6 dB drop method can produce inaccuracies in defect sizing 

as discussed in section B. However, the circular shape of the 

test defects ensures that any errors in sizing, which might cause 

changes in diameter, will have minimal impact on the position 

of the defect's centroid. Obtaining an accurate ground truth for 

in-plane localization less than 1.0 mm is infeasible due to the 

cumulative positional errors introduced throughout the 

experimental setup. Therefore, this research uses the 6 dB drop 

criterion as a reference standard, to validate the agreement 

between the 6 dB and U-Net’s in-plane localization. By 

comparison, experimental through-thickness depth 

measurements for defects are considerably easier to acquire, 

which allows for a direct assessment. 
1) Depth 

The segmentation of volumetric ultrasonic data offers a distinct 

advantage compared to the 6 dB drop method due to its capacity 

for depth-wise localization. This eliminates the need to employ 

multiple data types for characterization, such as amplitude and 

time-of-flight C-scans. The depth-wise position determined 

from the segmented volume is represented by the mean 

segmented depth. In Figure 9 the predicted defect depth is 

compared to the true measured depth of the reference defects. 

The segmented volumes demonstrate an excellent level of 

accuracy in depth-wise localization, as evidenced by a Mean 

Absolute Error (MAE) of 0.08 mm. This precision can be 

attributed to the substantially higher sampling rate in the 

temporal domain in contrast to the spatial domains, resulting in 

superior temporal resolution when compared to spatial 

resolution. 

 
Figure 9: Depth localization results. 

2) In plane 

The performance of the models’ in-plane localization is 

quantified by measuring their deviation from the centroid area 

compared to the 6 dB drop. Figure 10 visually presents the 
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centroid deviation with reference to defect sizes and the pitch 

of array elements. As depicted in the figure, 75% of the 

variations (30 out of 40 defects) are below the 0.8 mm array 

pitch. 

a) 

 
b) 

 
Figure 10: In plane localization results compared to 6 dB drop with reference 
to defect diameters (a) and the expanded (b), which shows the reference to the 

array pitch more clearly. 

Table 2 in the appendix, provides a comprehensive overview of 

the in-plane localization outcomes, including the absolute 

distance between the 6 dB criterion and the centroid determined 

by the model. The MAE of 0.57 mm demonstrates a substantial 

concordance with the established industrial benchmark 

represented by the 6 dB drop criterion for in-plane localization. 

Notably, the MAE, being less than the 0.8 mm array pitch, 

which establishes the spatial resolution, underscores the robust 

agreement between the model-based in-plane localization and 

the standard reference. 

B. Sizing 

 
Figure 11: Sizing results for the 6 dB drop method and U-Net predictions. 

Figure 11 presents a summary of the defect diameter 

predictions from the original segmented from the 6 dB drop 

and U-Net areas for each defect compared to the known 

ground truth area. 
1) 6 dB Drop Method 

With a MAE of 1.35 mm, our findings demonstrate a 

reasonable degree of accuracy, which, when coupled with 

suitable safety factors, is likely to be deemed adequate in 

industrial settings. Nevertheless, it is crucial to acknowledge 

that real-world responses often deviate from the ideal defect 

response, leading the 6 dB drop approach to systematically 

underestimate defect sizes [31]. 

This limitation has prompted the utilization of alternative 

amplitude drop methods for sizing in industry [27], [32], 

wherein the threshold values are frequently determined through 

experimental calibration. The experimental data collected for 

this research corroborates this tendency for under sizing defect 

responses (Figure 11), particularly for defects exceeding 4.0 mm 

in diameter. Which exhibit a mean undersize of 1.37 mm. 

Conversely, our results reveal a tendency to oversize defects of 

3.0 and 4.0 mm in diameter. 

It is essential to recognize that any sizing method relying on 

maximum amplitude necessitates the defect to be substantially 

larger than the acoustic beam to accurately ascertain the 

maximum acoustic response. The experimental setup employed 

in this work, which utilized a 4-element sub-aperture with an 

element pitch of 0.8 mm, resulted in an effective transducer 

width of 3.2 mm. Considering this in combination with the 

spatial resolution limitations imposed by the fixed 0.8 mm pitch 

for each beam step, along with accounting for any beam spread, 

it was determined that the experimental setup was inadequate 

for the precise sizing of defects measuring 4 mm or less when 

employing an amplitude drop method. This leads to the average 

oversizing of 3.0 and 4.0 mm defects of 0.82 mm, counter to 

the expectation of the 6 dB amplitude drop under sizing defects. 

The under sizing of defects larger than the diameter of the 

acoustic beam can likely be attributed to the curved edges of 

the defects. Since these defects do not maintain orthogonality 

to the sizing axis, the result is a diminished reflector when 

accounting for the three-dimensional nature of the response. 

This leads to a 6 dB decrease in acoustic energy closer to the 

center of the defect, rather than at the true defect edge. The 
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inconsistency of this method and the need for varying 

amplitude drop thresholds adds to the complexity of consistent 

defect sizing in industry and could be a concern for safety 

critical parts.  
2) U-Net  

The initial segmentation of U-Net masks yielded a MAE of 

2.09 mm, which represents a 55% increase in error compared 

to the 6 dB drop method. As depicted in Figure 11, there was a 

consistent tendency to overestimate defect sizes across the 

range of diameters. This observation underscores the U-Net 

approach's reduced reliance on absolute peak amplitudes and 

its ability to deliver more consistent performance across a range 

of defect sizes, even when the defect size is not greater than the 

width of the acoustic beam. Moreover, it is worth noting that in 

numerous industrial applications for safety-critical 

components, it is preferable to overestimate rather than 

underestimate defect sizes. 

It is imperative to delve into the reasons for the model's 

consistent trend of oversizing defects. Given that the model 

exhibited strong convergence during training on synthetic 

datasets, the overestimation observed during testing hints at a 

domain disparity between training on synthetic data and testing 

on experimental data. To elucidate this distinction, a 

comparative analysis using the 6 dB drop method was 

conducted between the responses derived from the 

experimental data and those generated by synthetic data for 

corresponding defect sizes and depths, as illustrated in Figure 

12 (a). As previously noted, defects of 3 and 4 mm in diameter 

were too small to be accurately sized using this experimental 

setup and the 6 dB drop method, and thus, were excluded from 

this analysis (Figure 12 (b)). 

a)  

b) 

 
Figure 12: Comparison of sizing for synthetic and experimental data for all 

defect sizes (a) and defect diameters above 4 mm (b). 

The comparison reveals that synthetic responses tend to yield 

larger defect sizes than experimental responses when 

employing the 6 dB drop method. Since our model's ground 

truth during training was based on synthetic response masks, it 

becomes apparent why there exists a propensity to overestimate 

defect sizes in our model; simulated responses tend to produce 

spatially larger defect responses than experimental. This 

disparity can be attributed to a combination of factors, CFRP 

acting as an acoustic collimator is likely the most impactful 

cause. Due to the anisotropic nature of CFRP, attenuation 

increases significantly as the propagation angle to normal 

increases [61]. This effect was not captured in the semi-

analytical simulations, as it did not account for the anisotropic 

acoustic attenuation. However, due to the infeasible timescales 

of the full FEA study, the approach was deemed promising with 

the addition of augmentations to bridge the gap between 

synthetic and real domains. 

Consequently, these simulations resulted  in increased 

acoustic beam spread and larger defect responses in the 

simulated domain compared to the experimental domain. 

To rectify this domain disparity, a constant R (given as the ratio 

between synthetic and experimental response diameters) was 

computed. The calculation for R was performed based on the 

disparities between sizes for the experimental and synthetic 

defect responses using the 6 dB drop method, as detailed Table 

3 in the appendix. The resulting correction factor was 

determined by the mean R calculated across defects with 

diameters exceeding 4 mm. The resulting correction factor is 

 .    as previously noted, defects with diameters ≤   mm were 

deemed too small to be accurately sized with this experimental 

setup and the 6 dB drop method). When this correction factor 

is applied to the defect sizes determined from the model 

predictions, a greatly improved agreement with the known 

defect sizes is achieved, as shown in the Figure 13. This 

correction results in a reduction of the MAE by 58%, bringing 

it down to 0.88 mm. Consequently, defect sizing exceeds the 

accuracy of the 6 dB drop method substantially by 35%. 

As the model is fully convolutional, it can scale to accept 

different sized inputs. For this application, the maximum defect 

size is limited by the inspected volume of 51.2 mm2 in the 

spatial domain. While the architecture can adjust for larger 

volumes, this was not investigated due to computational cost 

and the sizes of the defects considered. Conversely, the 

minimum defect size is constrained by the ultrasonic setup, 

with the smallest defect size tested in this study being 3.0 mm 

in diameter. Initial trials with 1.0 mm diameter FBHs were 

unsuccessful due to the current measurement setup's inability 

to capture ultrasonic responses from them due to the probes 

pitch. However, by achieving good results on the 3.0 mm 

FBHs, it is expected that the same approach could be applied to 

even smaller defects given the UT setup is adjusted for that 

inspection scenario. 
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Figure 13: Corrected sizing results for the U-Net predictions. 

C. Out-of-Distribution Testing 

The model utilized in this study underwent supervised training, 

a process commonly employed in ML where the model learns 

patterns and relationships from labelled training data. 

Typically, supervised models excel in predicting examples that 

fall within the distribution of the training data. In this research, 

the training data was generated from simulated data, designed 

to replicate the geometry and characteristics of FBHs observed 

during testing. However, it's important to note that naturally 

occurring defects may exhibit significant variations in 

geometry. While defects in composite materials often manifest 

in-plane, their characteristics can vary widely. Training a 

model to generalize across such diverse conditions would likely 

necessitate a substantially larger and more varied training 

dataset. 

To give an insight into the model's generalizability to different 

defect types and geometries, its sizing and in-plane localization 

performance was also evaluated on 15 square, 6 mm wide, 

Polytetrafluoroethylene (PTFE) inserts from a different sample. 

These different defect types can be considered a semantic 

distribution shift from the FBHs seen in training, and therefore 

categorized as “near Out-of-Distribution” [62]. 5 of the defects 

were located within 2 plies of the front wall surface, 5 were in 

the middle of the component and 5 were located within 2 plies 

of the back surface. This highlighted a limitation of the model, 

in that defects very near to front or backwall surfaces proved 

too challenging to segment. To account for this the front and 

back wall responses were removed. The results of this 

evaluation are detailed in Table 4, providing valuable insights 

into the model's performance for defects out of its training 

distribution.  

Whilst this does not serve to test the wide variety of defect 

geometries which occur naturally, the analysis provides 

insights into the model's efficacy to generalize to defects seen 

outside of the training distribution. A MAE of 1.50 mm for 

defect width was observed after the correction factor was 

applied. This represents a 71% increase in sizing error 

compared to defects within the training distribution. In-plane 

localization performed much better with an MAE of 0.86 mm, 

a 51% increase in localization error however, this is still in line 

with the element pitch. As these inserts were embedded pre-

cure it is not possible to extract a true measured ground truth of 

through-thickness localization as is the case for FBHs, this 

analysis has therefore been omitted. These results highlight a 

limitation of the proposed model and training regime. Synthetic 

data effectively addresses the challenge of acquiring labelled 

training data and can train an effective model for expected 

defects. However, for defects outside of the training 

distribution, there is a significant drop in performance. 

Furthermore, for edge cases such as defects near geometric 

features, additional pre-processing steps may be required; 

further limiting the generalizability of the model. Most DL 

work applied to NDE has a very specific and controlled 

application, and there's a notable challenge in finding models 

that have demonstrated effective generalizability across various 

materials, defect types, and component geometries. In future 

work the authors hope to further expand the synthetic training 

data to encompass a far wider range of defect types and 

geometries whilst also simulating different component 

geometries, accounting for edge cases such as near front and 

back wall responses. With a much larger synthetic training set 

it is hoped that a far more generalizable model can be trained. 

V. CONCLUSION 

This paper proposes the use of a 3D U-Net to size and localize 

defects in CFRP by segmenting volumetric ultrasound data. 

Defect sizing is a crucial piece of information for evaluating 

defects against standards and acceptance criteria whilst 

accurate localization is beneficial if re-work is required. A key 

benefit of the approach is that the use of volumetric ultrasound 

data allowed for through-thickness and in-plane localization 

whilst removing the requirement for gating and reducing pre-

processing. Such gating and amplitude threshold selection is 

often performed manually by the NDE operator leading to data 

errors if gates and thresholds are incorrectly set.  

Simulations were used to generate synthetic data and ground 

truth segmentation masks for training. This was a key 

requirement and allowed for the training of a segmentation 

model in a fully supervised manner. Experimentally collected 

ultrasonic responses from manufactured reference defects were 

used for testing. Sizing and in-plane localization were 

evaluated against the widely accepted 6 dB drop standard, and 

through thickness localization was compared to the measured 

ground truth.  

The models’ depth-wise localization showed excellent results 

with a MAE of 0.08 mm. In-plane localization had good 

agreement with the accepted 6 dB drop standard with a MAE 

of 0.57 mm. The significant resolution differences in the spatial 

and temporal domains resulted in differences of error scales for 

in-plane and depth wise localization. This is a limitation of 

using a fixed pitch array, but the errors in-plane are reasonable 

when compared to the array pitch of 0.8 mm, which is the 

limiting factor for spatial resolution.  

The 6 dB drop consistently undersized experimental defects 

greater than 4 mm in diameter whilst the U-Net produced 

segmentation masks that consistently oversized defects. The U-

Net’s oversizing was consistent across defect sizes, showing 

that it was less reliant in maximum amplitude, making it more 

robust to sizing defects smaller than the width of the acoustic 

beam, which proved inconsistent for amplitude drop methods. 

In industrial settings other factors such as parallelism of defects 

to the inspection surface would also impact the maximum 
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signal response, introducing further inaccuracies to amplitude-

based sizing methods. Upon investigation of the synthetic and 

experimental data domains it was evident that the experimental 

responses gave rise to smaller defect responses. By correcting 

for this disparity between the source and target domain using a 

single correction factor it became possible to reduce the MAE 

for defect sizing from 2.09 mm to 0.88 mm. The corrected 

defect sizing from U-Net gave a 35% reduction in MAE sizing 

compared to the commonly accepted 6 dB drop method. 

Despite this the 6 dB drop method is based on physical 

understanding of defect responses and whilst it has limitations 

the results are directly explainable. Whilst the generation of a 

segmentation map aides in providing some explanation for 

defect sizing and is more interrogatable than a regression 

model, it still relies on a deep learning approach which is less 

explainable than an amplitude-based threshold. Even so, a clear 

benefit of the volumetric segmentation is that it can be 

translated directly into a computer-aided design file which 

could dramatically increase the efficiency of subsequent report 

generation and simulation-based testing of components. 

While the study demonstrated promising results in defect sizing 

and localization, it's essential to acknowledge a current 

limitation: the absence of real defects from industrial 

manufacturing processes for testing. Although out-of-

distribution cases were examined using PTFE inserts, 

evaluating performance on naturally occurring defects would 

be advantageous. The out-of-distribution testing underscored 

the necessity for a more extensive distribution of training data. 

Future work aims to address this by expanding the training 

dataset, with different defect geometries, incorporating 

different probe frequencies, and testing on naturally occurring 

defects with irregular shapes. Furthermore, the objective is to 

integrate this research with previous work on defect detection 

to develop an end-to-end system for automated NDE data 

processing in industrial manufacturing environments. 

VI. APPENDIX 

Table 2: Complete model centroid deviation results from the 6 dB drop. 
Sample 1 

Defect 

Diameter 

(mm) 

Deviation in 

X (mm) 

Deviation in 

Y (mm) 

Absolute 

Displacement 

(mm) 

9 

-0.05 0.10 0.11 

0.58 -0.39 0.70 

-0.49 -0.99 1.10 

0.18 0.06 0.19 

0.01 -0.17 0.18 

7 

0.63 0.08 0.63 

-0.12 0.03 0.13 

-0.07 -1.64 1.64 

-0.18 0.22 0.29 

-0.09 0.02 0.09 

6 

-0.03 -0.09 0.09 

0.16 -1.11 1.12 

0.67 -0.38 0.77 

-0.24 1.04 1.06 

-0.09 -0.07 0.12 

4 

-1.34 0.91 1.62 

-0.45 -0.08 0.46 

-0.05 0.30 0.30 

-0.70 1.74 1.88 

-0.90 -0.26 0.94 

3 -0.82 -0.55 0.98 

0.14 -0.11 0.18 

-0.21 0.10 0.23 

-0.30 0.20 0.36 

0.06 -0.11 0.13 

MAE Sample 1 0.61 

Sample 2 

9 

0.42 -0.36 0.55 

-0.50 -0.22 0.54 

-0.94 0.02 0.94 

-0.31 0.45 0.55 

-0.14 0.15 0.21 

6 

0.37 -0.03 0.37 

-0.51 -0.11 0.52 

-0.91 -0.06 0.91 

0.00 -0.04 0.04 

-0.22 -0.13 0.25 

3 

0.27 -0.38 0.47 

0.04 -0.59 0.59 

0.79 -0.15 0.80 

0.03 -0.18 0.18 

0.60 0.14 0.61 

MAE Sample 2 0.50 

Total MAE 0.57 

 

Table 3: Comparison in sizing of experimental and synthetic responses with 

the 6 dB drop method. Where 𝑅 is the ratio of synthetic response to 

experimental response. 𝑅 gives the mean average of 𝑅 for a given defect 

diameter. 

Sample 1 

Defect 

Diameter 

(mm) 

6 dB Drop Diameter 

𝑹 =
𝒔𝒚𝒏𝒕𝒉

𝒆𝒙𝒑
 𝑹 

Experimental 

Response 

Synthetic 

Response 

9 

6.63 8.47 1.28 

1.21 

7.87 8.47 1.08 

7.16 8.47 1.18 

8.27 8.47 1.02 

6.64 9.89 1.49 

7 

4.51 6.51 1.44 

1.22 

4.94 6.51 1.32 

4.51 6.51 1.44 

6.69 6.51 0.97 

7.97 7.44 0.93 

6 

3.38 5.19 1.53 

1.18 

4.14 5.11 1.23 

4.60 5.11 1.11 

5.71 5.99 1.05 

6.63 6.51 0.98 

4 

4.78 3.13 0.65 

0.82 

3.93 3.13 0.80 

5.03 3.13 0.62 

4.14 4.42 1.07 

5.19 5.11 0.98 

3 

3.38 3.13 0.93 

0.88 

4.14 3.13 0.76 

2.99 3.13 1.05 

4.14 2.85 0.69 

4.42 4.33 0.98 

Sample 2 

9 

8.47 8.47 1.00 

1.18 

7.22 8.47 1.17 

7.39 8.47 1.15 

7.44 8.47 1.14 

6.87 9.89 1.44 

6 

6.51 5.19 0.80 

1.26 

4.86 5.11 1.05 

3.61 5.11 1.41 

3.83 5.99 1.56 

4.42 6.51 1.47 
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3 

3.38 3.13 0.93 

0.83 

3.72 3.13 0.84 

4.69 3.13 0.67 

4.33 2.85 0.66 

4.04 4.33 1.07 

 
Table 4: Sizing and in-plane localization results for out of distribution test 

defects. 
Width (mm) Deviat

ion  

in X 

(mm) 

Deviat

ion 

in Y 

(mm) 

Absolute  

Displace

ment 

(mm) 

Tr

ue 

Predic

ted 

Predic

ted  

Error 

Correc

ted 

Correc

ted  

Error 

6 

5.18 -0.82 4.28 -1.72 -0.18 -1.6 1.61 

6.69 0.69 5.53 -0.47 -0.24 -0.14 0.28 

8.98 2.98 7.42 1.42 0.08 0.47 0.48 

8.98 2.98 7.42 1.42 0.06 -0.45 0.45 

6.65 0.65 5.49 -0.51 -0.09 -0.18 0.20 

6.60 0.60 5.45 -0.55 -0.15 -0.21 0.26 

1.96 -4.04 1.62 -4.38 2.22 1.86 2.90 

7.11 1.11 5.88 -0.12 -0.44 0.07 0.45 

8.80 2.80 7.27 1.27 -0.03 0.51 0.51 

4.23 -1.77 3.50 -2.50 -0.42 -1.23 1.30 

5.99 -0.01 4.95 -1.05 -1.44 -0.69 1.60 

3.10 -2.90 2.56 -3.44 -0.82 -0.6 1.02 

8.80 2.80 7.27 1.27 0.09 0.1 0.13 

6.50 0.50 5.37 -0.63 -0.5 -0.07 0.50 

5.06 -0.94 4.18 -1.82 -1.04 -0.85 1.34 

MAE 1.71  1.50   0.86 

VII. REFERENCES 

[1] J. Zhang, G. Lin,  . Vaidya, and H. Wang, ‘ ast, 

present and future prospective of global carbon fibre 

composite developments and applications’, Composites 

Part B: Engineering, vol. 250, p. 110463, Feb. 2023, 

doi: 10.1016/j.compositesb.2022.110463. 

[2] V. Giurgiutiu, ‘ hapter   -  ntroduction’, in Structural 

Health Monitoring of Aerospace Composites, V. 

Giurgiutiu, Ed., Oxford: Academic Press, 2016, pp. 1–

23. doi: 10.1016/B978-0-12-409605-9.00001-5. 

[3]  . Djordjevic, ‘Non Destructive Test Technology for 

the  omposite’, p. 7, Jan.  009. 

[4] C. Meola, S. Boccardi, G. M. Carlomagno, N. D. Boffa, 

 . Monaco, and  . Ricci, ‘Nondestructive evaluation of 

carbon fibre reinforced composites with infrared 

thermography and ultrasonics’, Composite Structures, 

vol. 134, pp. 845–853, Dec. 2015, doi: 

10.1016/j.compstruct.2015.08.119. 

[5] A. M.- . Dorado, ‘ omposite Material  haracterization 

using  coustic Wave  peed Measurements’, p. 5. 

[6] Ley, O. and V. Godinez, ‘Non-destructive evaluation 

(NDE) of aerospace composites: application of infrared 

  R  thermography’, doi: 

10.1533/9780857093554.3.309. 

[7]  . Kokurov and D.  ubbotin, ‘ ltrasonic detection of 

manufacturing defects in multilayer composite 

structures’, IOP Conference Series: Materials Science 

and Engineering, vol. 1023, p. 012013, Jan. 2021, doi: 

10.1088/1757-899X/1023/1/012013. 

[8] D. K. Hsu, ‘ 5 - Non-destructive evaluation (NDE) of 

aerospace composites: ultrasonic techniques’, in Non-

Destructive Evaluation (NDE) of Polymer Matrix 

Composites, V. M. Karbhari, Ed., in Woodhead 

Publishing Series in Composites Science and 

Engineering. , Woodhead Publishing, 2013, pp. 397–

422. doi: 10.1533/9780857093554.3.397. 

[9]  . Heinecke and  . Willberg, ‘Manufacturing-Induced 

Imperfections in Composite Parts Manufactured via 

 utomated  iber  lacement’, J. Compos. Sci., vol. 3, 

no. 2, p. 56, Jun. 2019, doi: 10.3390/jcs3020056. 

[10]  .  apa, V. Lopresto, and  . Langella, ‘ ltrasonic 

inspection of composites materials: Application to 

detect impact damage’, International Journal of 

Lightweight Materials and Manufacture, vol. 4, no. 1, 

pp. 37–42, Mar. 2021, doi: 

10.1016/j.ijlmm.2020.04.002. 

[11] L. Séguin-Charbonneau, J. Walter, L.-D. Théroux, L. 

 cheed,  .  eausoleil, and  . Masson, ‘ utomated 

defect detection for ultrasonic inspection of CFRP 

aircraft components’, NDT & E International, vol. 122, 

p. 102478, Sep. 2021, doi: 

10.1016/j.ndteint.2021.102478. 

[12]  . Gholizadeh, ‘  review of non-destructive testing 

methods of composite materials’, Procedia Structural 

Integrity, vol. 1, pp. 50–57, 2016, doi: 

10.1016/j.prostr.2016.02.008. 

[13] M. Jolly et al., ‘Review of Non-destructive Testing 

(NDT) Techniques and their Applicability to Thick 

Walled  omposites’, Procedia CIRP, vol. 38, pp. 129–

136, Jan. 2015, doi: 10.1016/j.procir.2015.07.043. 

[14] E. Duernberger, C. MacLeod, D. Lines, C. Loukas, and 

M. Vasilev, ‘ daptive optimisation of multi-aperture 

ultrasonic phased array imaging for increased 

inspection speeds of wind turbine blade composite 

panels’, NDT & E International, vol. 132, p. 102725, 

Dec. 2022, doi: 10.1016/j.ndteint.2022.102725. 

[15] C. Mineo et al., ‘ le ible integration of robotics, 

ultrasonics and metrology for the inspection of 

aerospace components’, AIP Conference Proceedings, 

vol. 1806, no. 1, p. 020026, Feb. 2017, doi: 

10.1063/1.4974567. 

[16]  . Maack, V.  alvador, and  . David, ‘Validation of 

artificial defects for Non-destructive testing 

measurements on a reference structure’, MATEC Web of 

Conferences, vol. 199, p. 06006, Jan. 2018, doi: 

10.1051/matecconf/201819906006. 

[17] P. Gardner et al., ‘Machine learning at the interface of 

structural health monitoring and non-destructive 

evaluation’, Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering 

Sciences, vol. 378, no. 2182, p. 20190581, Oct. 2020, 

doi: 10.1098/rsta.2019.0581. 

[18] C. Mineo et al., ‘Robotic Geometric and Volumetric 

Inspection of High Value and Large Scale Aircraft 

Wings’, in 2019 IEEE 5th International Workshop on 

Metrology for AeroSpace (MetroAeroSpace), Jun. 2019, 

pp. 82–86. doi: 

10.1109/MetroAeroSpace.2019.8869667. 

[19] ‘ ntroduction to non-destructive testing’,  erospace 

Testing International. Accessed: Nov. 17, 2021. 

[Online]. Available: 

https://www.aerospacetestinginternational.com/features/

introduction-to-non-destructive-testing.html 



SHAUN MCKNIGHT et al.: ADVANCING CARBON FIBER COMPOSITE INSPECTION: DEEP LEARNING-ENABLED DEFECT LOCALIZATION AND SIZING VIA 3-
DIMENSIONAL U-NET SEGMENTATION OF ULTRASONIC DATA
 
14 

 

[20] F. W. Margrave, K. Rigas, D. A. Bradley, and P. 

 arrowcliffe, ‘The use of neural networks in ultrasonic 

flaw detection’, Measurement, vol. 25, no. 2, pp. 143–

154, Mar. 1999, doi: 10.1016/S0263-2241(98)00075-X. 

[21] J. Ye,  .  to, and N. Toyama, ‘ omputerized  ltrasonic 

 maging  nspection:  rom  hallow to Deep Learning’, 

Sensors (Basel), vol. 18, no. 11, p. 3820, Nov. 2018, 

doi: 10.3390/s18113820. 

[22] B. Valeske, A. Osman, F. Römer, and R. Tschuncky, 

‘Ne t Generation ND   ensor  ystems as   oT 

 lements of  ndustry  .0’, Research in Nondestructive 

Evaluation, vol. 31, no. 5–6, pp. 340–369, Nov. 2020, 

doi: 10.1080/09349847.2020.1841862. 

[23] S. Cantero-Chinchilla, P. D. Wilcox, and A. J. 

 ro ford, ‘Deep learning in automated ultrasonic ND  

-- developments, a ioms and opportunities’, 

arXiv:2112.06650 [eess], Dec. 2021, Accessed: Jan. 12, 

2022. [Online]. Available: 

http://arxiv.org/abs/2112.06650 

[24] M. Gower, G. Sims, R. Lee, S. Frost, M. Stone, and M. 

Wall, ‘Measurement Good  ractice Guide’, no. 78. 

[25] Y. Wang, F. Tao, Y. Zuo, M. Zhang, and Q. Qi, 

‘Digital-Twin-Enhanced Quality Prediction for the 

 omposite Materials’, Engineering, vol. 22, pp. 23–33, 

Mar. 2023, doi: 10.1016/j.eng.2022.08.019. 

[26] D. G.  uttaraju and H. G. Hanumantharaju, ‘ inite 

element analysis and validation of tensile properties of 

carbon fiber reinforced polymer matri  composites’, 

Materials Today: Proceedings, vol. 62, pp. 2800–2807, 

Jan. 2022, doi: 10.1016/j.matpr.2022.02.188. 

[27] M. V.  elice and Z.  an, ‘ izing of flaws using 

ultrasonic bulk wave testing:   review’, Ultrasonics, 

vol. 88, pp. 26–42, Aug. 2018, doi: 

10.1016/j.ultras.2018.03.003. 

[28]  . Hauffe,  . Hähnel, and K. Wolf, ‘ omparison of 

algorithms to quantify the damaged area in CFRP 

ultrasonic scans’, Composite Structures, vol. 235, p. 

111791, Mar. 2020, doi: 

10.1016/j.compstruct.2019.111791. 

[29] S. Barut, V. Bissauge, G. Ithurralde, and W. Claassens, 

‘ omputer-aided analysis of ultrasound data to speed-

up the release of aerospace   R  components’, e-

Journal of Nondestructive Testing, vol. 17, no. 07, Jul. 

2012, [Online]. Available: 

https://www.ndt.net/search/docs.php3?id=12429&msgI

D=0&rootID=0 

[30]  .  arut and N. Dominguez, ‘NDT Diagnosis 

Automation: a Key to Efficient Production in the 

 eronautic  ndustry’, e-Journal of Nondestructive 

Testing, vol. 21, no. 07, Jul. 2016, [Online]. Available: 

https://www.ndt.net/search/docs.php3?id=19184&msgI

D=0&rootID=0 

[31]  . Kumaran and  . Rani, ‘ pplication of  db Drop 

Technique to Estimate the Width of Sub Assembly Ring 

Top  sing  ulse  cho  ltrasonic Technique’, 

International Journal of Engineering and Technology, 

vol. 5, pp. 4771–4775, Jan. 2013. 

[32]  .  iorau, ‘ omparison  etween -6 DB and -12 DB 

 mplitude Drop Techniques for Length  izing’. 

[33] X. Li, Y. Wang,  . Ni, H. Hu, and Y.  ong, ‘ law 

sizing using ultrasonic C-scan imaging with dynamic 

thresholds’, insight, vol. 59, no. 11, pp. 603–608, Nov. 

2017, doi: 10.1784/insi.2017.59.11.603. 

[34]  . Niu and V.  rivastava, ‘ imulation trained  NN for 

accurate embedded crack length, location, and 

orientation prediction from ultrasound measurements’, 

International Journal of Solids and Structures, vol. 242, 

p. 111521, May 2022, doi: 

10.1016/j.ijsolstr.2022.111521. 

[35] R. J. Pyle, R. L. T. Bevan, R. R. Hughes, R. K. Rachev, 

 .  .  .  li, and  . D. Wilco , ‘Deep Learning for 

 ltrasonic  rack  haracterization in ND ’, IEEE 

Trans. Ultrason., Ferroelect., Freq. Contr., vol. 68, no. 

5, pp. 1854–1865, May 2021, doi: 

10.1109/TUFFC.2020.3045847. 

[36] T. Lardner, G. West, G. Dobie, and A. Gachagan, 

‘ utomated sizing and classification of defects in 

  ND  pressure tubes’, Nuclear Engineering and 

Design, vol. 325, pp. 25–32, Dec. 2017, doi: 

10.1016/j.nucengdes.2017.09.029. 

[37] X.  heng, G. Ma, Z. Wu, H. Zu, and X. Hu, ‘ utomatic 

defect depth estimation for ultrasonic testing in carbon 

fiber reinforced composites using deep learning’, NDT 

& E International, vol. 135, p. 102804, Apr. 2023, doi: 

10.1016/j.ndteint.2023.102804. 

[38] I. Virkkunen, T. Koskinen, O. Jessen-Juhler, and J. 

Rinta-aho, ‘ ugmented  ltrasonic Data for Machine 

Learning’, J Nondestruct Eval, vol. 40, no. 1, p. 4, Jan. 

2021, doi: 10.1007/s10921-020-00739-5. 

[39]  . M.  heng and H.  . Malhi, ‘Transfer Learning with 

Convolutional Neural Networks for Classification of 

 bdominal  ltrasound  mages’, J Digit Imaging, vol. 

30, no. 2, pp. 234–243, Apr. 2017, doi: 

10.1007/s10278-016-9929-2. 

[40] Y. Zhou et al., ‘Multi-task learning for segmentation 

and classification of tumors in 3D automated breast 

ultrasound images’, Medical Image Analysis, vol. 70, p. 

101918, May 2021, doi: 10.1016/j.media.2020.101918. 

[41] Y. Liu, ‘ D  mage  egmentation of MR   rostate  ased 

on a Pytorch Implementation of V-Net’, J. Phys.: Conf. 

Ser., vol. 1549, no. 4, p. 042074, Jun. 2020, doi: 

10.1088/1742-6596/1549/4/042074. 

[42] S. McKnight et al., ‘ -Dimensional Residual Neural 

 rchitecture  earch for  ltrasonic Defect Detection’, 

IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control, pp. 1–1, 2024, doi: 

10.1109/TUFFC.2024.3353408. 

[43]  .  igueira and  . Vaz, ‘ urvey on  ynthetic Data 

Generation,  valuation Methods and G Ns’, 

Mathematics, vol. 10, no. 15, Art. no. 15, Jan. 2022, 

doi: 10.3390/math10152733. 

[44] S. McKnight et al., ‘  comparison of methods for 

generating synthetic training data for domain adaption 

of deep learning models in ultrasonic non-destructive 

evaluation’, NDT & E International, vol. 141, p. 

102978, Jan. 2024, doi: 10.1016/j.ndteint.2023.102978. 



SHAUN MCKNIGHT et al.: ADVANCING CARBON FIBER COMPOSITE INSPECTION: DEEP LEARNING-ENABLED DEFECT LOCALIZATION AND SIZING VIA 3-
DIMENSIONAL U-NET SEGMENTATION OF ULTRASONIC DATA
 
15 

 

[45] ‘ XT ND ,   perts in Non Destructive Testing 

 imulation with   V   oftware’.  ccessed: Nov. 07, 

2022. [Online]. Available: https://www.extende.com/ 

[46] S. Lonné, L. D. Roumilly, L. L. Ber, S. Mahaut, and G. 

 attiau , ‘ X  R M NT L V L D T ON O  

  V   LTR  ON     M L T ON ’,  00 , 

[Online]. Available: 

https://www.semanticscholar.org/paper/EXPERIMENT

AL-VALIDATION-OF-CIVA-ULTRASONIC-

Lonn%C3%A9-

Roumilly/16b85af3b6a96d4657c9902ca8652fbbf93cbf2

e 

[47] M. Darmon et al., ‘V L D T ON O   N 

ULTRASONIC CHARACTERIZATION 

TECHNIQUE FOR ANISOTROPIC MATERIALS: 

COMPARISON OF EXPERIMENTS WITH 

   M  RO  G T ON MOD LL NG’, 

presented at the 2019 INTERNATIONAL 

CONGRESS ON ULTRASONICS, Bruges 

Belgium. 

[48] K. Jezzine, D. Segur, R. Ecault, and N. 

Dominguez, ‘ imulation of ultrasonic inspections 

of composite structures in the CIVA software 

platform’, e-Journal of Nondestructive Testing, 

vol. 21, no. 07, Jul. 2016, [Online]. Available: 

https://www.ndt.net/search/docs.php3?id=19438&

msgID=0&rootID=0 

[49] O. Ronneberger,  .  ischer, and T.  ro , ‘ -Net: 

Convolutional Networks for Biomedical Image 

 egmentation’, in Medical Image Computing and 

Computer-Assisted Intervention – MICCAI 2015, 

N. Navab, J. Hornegger, W. M. Wells, and A. F. 

Frangi, Eds., in Lecture Notes in Computer 

Science. Cham: Springer International Publishing, 

2015, pp. 234–241. doi: 10.1007/978-3-319-

24574-4_28. 

[50] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, 

and K. H. Maier-Hein, ‘nn -Net: a self-

configuring method for deep learning-based 

biomedical image segmentation’, Nat Methods, 

vol. 18, no. 2, Art. no. 2, Feb. 2021, doi: 

10.1038/s41592-020-01008-z. 

[51] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, 

and O. Ronneberger, ‘ D  -Net: Learning Dense 

Volumetric Segmentation from Sparse 

 nnotation’. arXiv, Jun.   ,  0  . doi: 

10.48550/arXiv.1606.06650. 

[52] D. Medak, L. Posilovic, M. Subasic, M. Budimir, 

and  . Loncaric, ‘ utomated Defect Detection 

 rom  ltrasonic  mages  sing Deep Learning’, 

IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 

vol. 68, no. 10, pp. 3126–3134, Oct. 2021, doi: 

10.1109/TUFFC.2021.3081750. 

[53] Y.  u and X. Yao, ‘  review on manufacturing 

defects and their detection of fiber reinforced resin 

matri  composites’, Composites Part C: Open 

Access, vol. 8, p. 100276, Jul. 2022, doi: 

10.1016/j.jcomc.2022.100276. 

[54] P. Blain et al., ‘ rtificial defects in   R  

composite structure for thermography and 

shearography nondestructive inspection’, 

presented at the Fifth International Conference on 

Optical and Photonics Engineering, A. K. Asundi, 

Ed., Singapore, Singapore, Jun. 2017, p. 104493H. 

doi: 10.1117/12.2271701. 

[55] ‘Roller ORM:  hased  rray Wheel  robe’. 

Accessed: Jun. 06, 2023. [Online]. Available: 

https://www.olympus-ims.com/en/rollerform/ 

[56] ‘ ltrasonic  nspection  olutions for NDT |  eak 

NDT’.  ccessed:  eb.  8,  0  . [Online]. 

Available: https://www.peakndt.com/ 

[57] M. Vasilev et al., ‘ ensor-Enabled Multi-Robot 

System for Automated Welding and In-Process 

 ltrasonic ND ’, Sensors, vol. 21, no. 15, Art. no. 

15, Jan. 2021, doi: 10.3390/s21155077. 

[58] R. Drai, F. Sellidj, M. Khelil, and A. Benchaala, 

‘ laboration of some signal processing algorithms 

in ultrasonic techniques: application to materials 

NDT’, Ultrasonics, vol. 38, no. 1, pp. 503–507, 

Mar. 2000, doi: 10.1016/S0041-624X(99)00082-7. 

[59] M.  harifzadeh, H.  enali, and H. Rivaz, ‘ hase 

Aberration Correction: A Convolutional Neural 

Network  pproach’, IEEE Access, vol. 8, pp. 

162252–162260, 2020, doi: 

10.1109/ACCESS.2020.3021685. 

[60] D.  . Kingma and J.  a, ‘ dam:   Method for 

 tochastic Optimization’. arXiv, Jan.  9,  0 7. 

doi: 10.48550/arXiv.1412.6980. 

[61] K. Ono and  . Gallego, ‘ ttenuation of lamb 

waves in   R  plates’, Journal of Acoustic 

Emission, vol. 30, pp. 109–124, Jan. 2012. 

[62] J. Yang, K. Zhou, and Z. Liu, ‘ ull-Spectrum Out-

of-Distribution Detection’, Int J Comput Vis, vol. 

131, no. 10, pp. 2607–2622, Oct. 2023, doi: 

10.1007/s11263-023-01811-z. 
 

 
 


