Luminescence behavior of semipolar (10-11) InGaN/GaN "bow-tie" structures on patterned Si substrates
Bruckbauer, Jochen and Trager-Cowan, Carol and Hourahine, Ben and Winkelmann, Aimo and Vennéguès, Philippe and Ipsen, Anja and Yu, Xiang and Zhao, Xunming and Wallace, Michael J. and Edwards, Paul R. and Naresh-Kumar, G. and Hocker, Matthias and Bauer, Sebastian and Müller, Raphael and Bai, Jie and Thonke, Klaus and Wang, Tao and Martin, Robert W. (2020) Luminescence behavior of semipolar (10-11) InGaN/GaN "bow-tie" structures on patterned Si substrates. Journal of Applied Physics, 127 (3). 035705. ISSN 0021-8979 (https://doi.org/10.1063/1.5129049)
Preview |
Text.
Filename: Bruckbauer_etal_JAP_2019_Luminescence_behaviour_of_semi_polar_10_11_InGaN_GaN_bow_tie_structures.pdf
Final Published Version License: Download (3MB)| Preview |
Abstract
In this work, we report on the innovative growth of semipolar "bow-tie"-shaped GaN structures containing InGaN/GaN multiple quantum wells (MQWs) and their structural and luminescence characterization. We investigate the impact of growth on patterned (113) Si substrates, which results in the bow-tie cross section with upper surfaces having the (10-11) orientation. Room temperature cathodoluminescence (CL) hyperspectral imaging reveals two types of extended defects: black spots appearing in intensity images of the GaN near band edge emission and dark lines running parallel in the direction of the Si stripes in MQW intensity images. Electron channeling contrast imaging (ECCI) identifies the black spots as threading dislocations propagating to the inclined (10-11) surfaces. Line defects in ECCI, propagating in the [1-210] direction parallel to the Si stripes, are attributed to misfit dislocations (MDs) introduced by glide in the basal (0001) planes at the interfaces of the MQW structure. Identification of these line defects as MDs within the MQWs is only possible because they are revealed as dark lines in the MQW CL intensity images, but not in the GaN intensity images. Low temperature CL spectra exhibit additional emission lines at energies below the GaN bound exciton emission line. These emission lines only appear at the edge or the center of the structures where two (0001) growth fronts meet and coalesce (join of the bow-tie). They are most likely related to basal-plane or prismatic stacking faults or partial dislocations at the GaN/Si interface and the coalescence region.
ORCID iDs
Bruckbauer, Jochen ORCID: https://orcid.org/0000-0001-9236-9320, Trager-Cowan, Carol ORCID: https://orcid.org/0000-0001-8684-7410, Hourahine, Ben ORCID: https://orcid.org/0000-0002-7667-7101, Winkelmann, Aimo, Vennéguès, Philippe, Ipsen, Anja, Yu, Xiang, Zhao, Xunming, Wallace, Michael J. ORCID: https://orcid.org/0000-0003-1511-0627, Edwards, Paul R. ORCID: https://orcid.org/0000-0001-7671-7698, Naresh-Kumar, G. ORCID: https://orcid.org/0000-0002-9642-8137, Hocker, Matthias, Bauer, Sebastian, Müller, Raphael, Bai, Jie, Thonke, Klaus, Wang, Tao and Martin, Robert W. ORCID: https://orcid.org/0000-0002-6119-764X;-
-
Item type: Article ID code: 70977 Dates: DateEvent17 January 2020Published14 December 2019Accepted2019SubmittedSubjects: Science > Physics Department: Faculty of Science > Physics
Technology and Innovation Centre > Photonics
Strategic Research Themes > Measurement Science and Enabling Technologies
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 18 Dec 2019 12:13 Last modified: 03 Dec 2024 01:19 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/70977