Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing
Javadi, Yashar and Sweeney, Nina E. and Mohseni, Ehsan and MacLeod, Charles N. and Lines, David and Vasilev, Momchil and Qiu, Zhen and Mineo, Carmelo and Pierce, Stephen G. and Gachagan, Anthony (2020) Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing. Journal of Manufacturing Processes. ISSN 1526-6125
![]() |
Text (Javadi-etal-JMP-2020-Investigating-the-effect-of-residual-stress-on-hydrogen-cracking-in-multi-pass)
Javadi_etal_JMP_2020_Investigating_the_effect_of_residual_stress_on_hydrogen_cracking_in_multi_pass.pdf Accepted Author Manuscript Restricted to Repository staff only until 8 April 2021. License: ![]() Download (2MB) | Request a copy from the Strathclyde author |
Abstract
In this paper, the effect of Welding Residual Stress (WRS) on the size and morphology of hydrogen-induced cracks (HIC) is studied. Four samples were manufactured using a 6-axis welding robot and in two separate batches. The difference between the two batches was the clamping system used, which resulted in different amounts of welding deformation and WRS. The hydrogen cracks were intentionally manufactured in the samples using a localised water-quenching method, where water was sprayed over a specific weld pass in a predetermined position. The Phased-Array Ultrasonic Testing (PAUT) system was implemented during the welding process (high-temperature in-process method), to detect the HIC in real-time. The WRS in both batches was measured using the hole-drilling method, where a difference in transversal residual stress of 78 MPa was found between the two samples. Based upon both the PAUT results and microscopic investigations, the batch with higher WRS resulted in larger size and number of HIC. For the first time, the negative effect of WRS on HIC has been monitored in real-time using high-temperature in-process inspection. This was achieved using an innovative approach, introduced in this paper, to repeatably manufacture high and low WRS samples in order to control the size and location of subsequent HIC.
Creators(s): |
Javadi, Yashar ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Item type: | Article |
---|---|
ID code: | 72036 |
Keywords: | multi-pass robotic welding, phased array ultrasonic testing (PAUT), hydrogen induced crack (HIC), intentionally-embedded weld defects, welding residual stress (WRS), hole-drilling method, Electrical engineering. Electronics Nuclear engineering, Strategy and Management, Management Science and Operations Research, Industrial and Manufacturing Engineering |
Subjects: | Technology > Electrical engineering. Electronics Nuclear engineering |
Department: | Faculty of Engineering > Electronic and Electrical Engineering Strategic Research Themes > Advanced Manufacturing and Materials Technology and Innovation Centre > Sensors and Asset Management |
Depositing user: | Pure Administrator |
Date deposited: | 15 Apr 2020 14:20 |
Last modified: | 25 Dec 2020 03:24 |
URI: | https://strathprints.strath.ac.uk/id/eprint/72036 |
Export data: |