Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Children's understanding of drivers' intentions

Foot, H.C. and Thomson, J.A. and Tolmie, A.K. and Whelan, K.M. and Morrison, S. and Sarvary, P.A. (2006) Children's understanding of drivers' intentions. British Journal of Developmental Psychology, 24 (4). pp. 681-700. ISSN 0261-510X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

To become more skilled as pedestrians, children need to acquire a view of the traffic environment as one in which road users are active agents with different intentions and objectives. This paper describes a simulation study designed to explore children's understanding of drivers' intentions. It also investigated the effect of training children's sensitivity, through peer discussion and adult guidance, to the cues by which drivers signal their intentions. Results confirmed that children's ability to accurately predict drivers' intentions improves with age and that sensitizing children through training to the options for action available to drivers when signalling a manoeuvre improves their accuracy in predicting drivers' intentions. Training was also found to shift children's focus from contextual infrastructural features of the traffic environment (e.g. traffic signals, stop signs) by which to judge drivers' likely intentions to the explicit cues that drivers use to signal their imminent actions (e.g. slowing down, moving into the kerb). Training on the simulation was also shown to transfer to practical decision making at the roadside.