Structural and optical properties of InGaN/GaN layers close to the critical layer thickness
PEREIRA, SERGIO MANUEL DE SOUSA and Correia, M.R. and Pereira, Eduarda and Trager-Cowan, Carol and Sweeney, Francis and O'Donnell, Kevin and Alves, E. and Franco, N. and Sequeira, A.D. (2002) Structural and optical properties of InGaN/GaN layers close to the critical layer thickness. Applied Physics Letters, 81 (7). p. 1207. (https://doi.org/10.1063/1.1499220)
Full text not available in this repository.Request a copyAbstract
In this work, we investigate structural and optical properties of metalorganic chemical vapor deposition grown wurtzite InxGa1−xN/GaN epitaxial layers with thicknesses that are close to the critical layer thickness (CLT) for strain relaxation. CLT for InxGa1−xN/GaN structures was calculated as a function of the InN content, x, using the energy balance model proposed by People and Bean [Appl. Phys. Lett. 47, 322 (1985)]. Experimentally determined CLT are in good agreement with these calculations. The occurrence of discontinuous strain relaxation (DSR), when the CLT is exceeded, is revealed in the case of a 120 nm thick In0.19Ga0.89N layer by x-ray reciprocal space mapping of an asymmetrical reflection. The effect of DSR on the luminescence of this layer is clear: The luminescence spectrum shows two peaks centered at ∼2.50 and ∼2.67 eV, respectively. These two components of the luminescence of the sample originate in regions of different strain, as discriminated by depth-resolving cathodoluminescence spectroscopy. DSR leads directly to the emergence of the second, lower-energy, peak. Based on this experimental evidence, it is argued that the appearance of luminescence doublets in InGaN is not evidence of “quantum dotlike In-rich” or “phase separated” regions, as commonly proposed.
ORCID iDs
PEREIRA, SERGIO MANUEL DE SOUSA, Correia, M.R., Pereira, Eduarda, Trager-Cowan, Carol ORCID: https://orcid.org/0000-0001-8684-7410, Sweeney, Francis, O'Donnell, Kevin ORCID: https://orcid.org/0000-0003-3072-3675, Alves, E., Franco, N. and Sequeira, A.D.;-
-
Item type: Article ID code: 31891 Dates: DateEventJune 2002PublishedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 23 Jun 2011 15:23 Last modified: 04 Jan 2025 20:28 URI: https://strathprints.strath.ac.uk/id/eprint/31891