Evaluating multi-hazard risk associated with tropical cyclones using the fuzzy analytic hierarchy process model

Sarker, Sajib and Adnan, Mohammed Sarfaraz Gani (2023) Evaluating multi-hazard risk associated with tropical cyclones using the fuzzy analytic hierarchy process model. Natural Hazards Research, 4 (1). pp. 97-109. ISSN 2666-5921 (https://doi.org/10.1016/j.nhres.2023.11.007)

[thumbnail of Sarker-etal-NHR-2024-Evaluating-multi-hazard-risk-associated-with-tropical-cyclones]
Preview
Text. Filename: Sarker-etal-NHR-2024-Evaluating-multi-hazard-risk-associated-with-tropical-cyclones.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (7MB)| Preview

Abstract

Multi-hazard events have received attention globally due to their increasing frequency and severity in recent years. The coastal region of Bangladesh is particularly vulnerable to multi-hazard events induced by tropical cyclones (TC), including coastal flooding, extreme precipitation, extreme winds, and salinity intrusion. These events inflict substantial damage on human lives and property, yet there has been limited effort to quantitatively assess the associated risks. This study aims to investigate the spatial distribution of multi-hazard risks stemming from TC events, employing a Fuzzy Analytic Hierarchy Process (FAHP) approach. Risk is assessed in relation to hazard, exposure, vulnerability, and mitigation capacities in the study area. Various indicators are selected to define each of these four risk components, with weights determined through expert input for FAHP modeling. The results indicate that more than 50% of the area faces multi-hazard risks, with the hazard component exhibiting the highest degree of risk association, followed by exposure, vulnerability, and adaptive capacity. Storm surge-induced flooding is identified as the most prominent hazard during TC events, followed by intense precipitation, extreme winds, and salinity intrusion. Areas characterized by high population density, a large number of vulnerable populations (e.g., those under 15 years or over 65 years), low elevation, and underdevelopment are found to be the most risk prone. Notably, the presence of hospitals, cyclone centers, and effective warning systems in proximity to an area enhances its potential to withstand multi-hazard impacts. Among the 19 coastal districts, Cox's Bazar and Feni are identified as the most risk prone. The framework and findings presented in this study offer valuable insights for the development and prioritization of multi-hazard risk mitigation policies by identifying the most vulnerable zones and the associated risk factors.

ORCID iDs

Sarker, Sajib and Adnan, Mohammed Sarfaraz Gani ORCID logoORCID: https://orcid.org/0000-0002-7276-1891;