A novel deep neural network-based emotion analysis system for automatic detection of mild cognitive impairment in the elderly
Fei, Zixiang and Yang, Erfu and Yu, Leijian and Li, Xia and Zhou, Huiyu and Zhou, Wenjun (2022) A novel deep neural network-based emotion analysis system for automatic detection of mild cognitive impairment in the elderly. Neurocomputing, 468. pp. 306-316. ISSN 0925-2312 (https://doi.org/10.1016/j.neucom.2021.10.038)
Preview |
Text.
Filename: Fei_etal_Neurocomputing_2021_A_novel_deep_neural_network_based_emotion_analysis_system_for_automatic_detection.pdf
Accepted Author Manuscript License: Download (1MB)| Preview |
Abstract
A significant number of people are suffering from cognitive impairment all over the world. Early detection of cognitive impairment is of great importance to both patients and caregivers. However, existing approaches have their shortages, such as time consumption and financial expenses involved in clinics and the neuroimaging stage. It has been found that patients with cognitive impairment show abnormal emotion patterns. In this paper, we present a novel deep neural network-based system to detect the cognitive impairment through the analysis of the evolution of facial emotions while participants are watching designed video stimuli. In our proposed system, a novel facial expression recognition algorithm is developed using layers from MobileNet and Support Vector Machine (SVM), which showed satisfactory performance in 3 datasets. To verify the proposed system in detecting cognitive impairment, 61 elderly people including patients with cognitive impairment and healthy people as a control group have been invited to participate in the experiments and a dataset was built accordingly. With this dataset, the proposed system has successfully achieved the detection accuracy of 73.3%.
ORCID iDs
Fei, Zixiang, Yang, Erfu ORCID: https://orcid.org/0000-0003-1813-5950, Yu, Leijian, Li, Xia, Zhou, Huiyu and Zhou, Wenjun;-
-
Item type: Article ID code: 78606 Dates: DateEvent11 January 2022Published20 October 2021Published Online14 October 2021AcceptedSubjects: Science > Mathematics > Electronic computers. Computer science Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 17 Nov 2021 11:49 Last modified: 17 Nov 2024 11:25 URI: https://strathprints.strath.ac.uk/id/eprint/78606