Pulsed-jet propulsion of a squid-inspired swimmer at high Reynolds number
Luo, Yang and Xiao, Qing and Zhu, Qiang and Pan, Guang (2020) Pulsed-jet propulsion of a squid-inspired swimmer at high Reynolds number. Physics of Fluids, 32 (11). 111901. ISSN 1089-7666 (https://doi.org/10.1063/5.0027992)
Preview |
Text.
Filename: Luo_etal_PoF_2020_Pulsed_jet_propulsion_of_a_squid_inspired_swimmer_at_high_Reynolds_number.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
An inflation-deflation propulsion system inspired by the jet propulsion mechanism of squids and other cephalopods is proposed. The two-dimensional squid-like swimmer has a flexible mantle body with a pressure chamber and a nozzle that serves as the inlet and outlet of water. The fluid-structure interaction simulation results indicate that larger mean thrust production and higher efficiency can be achieved in high Reynolds number scenarios compared with the cases in laminar flow. The improved performance at high Reynolds number is attributed to stronger jet-induced vortices and highly suppressed external body vortices, which are associated with drag force. Optimal efficiency is reached when the jet vortices start to dominate the surrounding flow. The mechanism of symmetry-breaking instability under the turbulent flow condition is found to be different from that previously reported in laminar flow. Specifically, this instability in turbulent flow stems from irregular internal body vortices, which cause symmetry breaking in the wake. A higher Reynolds number or smaller nozzle size would accelerate the formation of this symmetry-breaking instability.
ORCID iDs
Luo, Yang ORCID: https://orcid.org/0000-0001-7875-6842, Xiao, Qing ORCID: https://orcid.org/0000-0001-8512-5299, Zhu, Qiang and Pan, Guang;-
-
Item type: Article ID code: 74093 Dates: DateEvent3 November 2020Published2 October 2020AcceptedSubjects: Naval Science > Naval architecture. Shipbuilding. Marine engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 05 Oct 2020 15:23 Last modified: 18 Dec 2024 01:27 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/74093