Stabilization via homogenization
Waurick, Marcus (2016) Stabilization via homogenization. Applied Mathematics Letters, 60. pp. 101-107. ISSN 0893-9659 (https://doi.org/10.1016/j.aml.2016.04.004)
Preview |
Text.
Filename: Waurick_AML_2017_Stabilization_via_homogenization.pdf
Accepted Author Manuscript License: Download (246kB)| Preview |
Abstract
In this short note we treat a 1+1-dimensional system of changing type. On different spatial domains the system is of hyperbolic and elliptic type, that is, formally, ∂t2un−∂x2un=∂tfand un−∂x2un=f on the respective spatial domains ⋃j∈{1,…,n}(j−1n,2j−12n) and ⋃j∈{1,…,n}(2j−12n,jn). We show that (un)n converges weakly to u, which solves the exponentially stable limit equation ∂t2u+2∂tu+u−4∂x2u=2(f+∂tf) on [0,1]. If the elliptic equation is replaced by a parabolic one, the limit equation is not exponentially stable.
ORCID iDs
Waurick, Marcus ORCID: https://orcid.org/0000-0003-4498-3574;-
-
Item type: Article ID code: 61541 Dates: DateEvent31 October 2016Published28 April 2016Published Online10 April 2016AcceptedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 10 Aug 2017 10:38 Last modified: 11 Nov 2024 11:44 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/61541
CORE (COnnecting REpositories)