On-board measurement techniques to quantify underwater radiated noise level
Turkmen, Serkan and Aktas, Batuhan and Atlar, Mehmet and Sasaki, Noriyuki and Sampson, Rod and Shi, Weichao (2017) On-board measurement techniques to quantify underwater radiated noise level. Ocean Engineering, 130. pp. 166-175. ISSN 0029-8018 (https://doi.org/10.1016/j.oceaneng.2016.11.070)
Preview |
Text.
Filename: Turkmen_etal_OE2017_On_board_measurement_techniques_to_quantify_underwater_radiated_noise_level.pdf
Accepted Author Manuscript License: Download (1MB)| Preview |
Abstract
Cavitating ship propellers are known to be the dominant noise source contributing significantly to the underwater radiated noise (URN) level. Innovative measurement methods using on-board devices need to be further investigated as they offer a serious alternative to traditional methods in terms of cost-efficiency and practicality. This exploratory study combined simultaneous on- and off-board noise and vibration measurements with cavitation views captured by digital photography and high speed cameras.Comprehensive full-scale trials were conducted on Newcastle University’s research vessel, The Princess Royal, in the framework of the FP7-EU project SONIC. On-board data were captured from multiple measurement systems (including. hull pressure sensors, accelerometers, optical devices, shaft strain gauges) provided by SONIC project partners CETENA, Wärtsilä , University of Southampton and Newcastle University. A new semi-empirical correlation method based on cavitating propeller pressure fluctuation and the URN level was established. Results offer clear evidence of successfully estimating URN with on-board measurements up to the middle frequency region where the blade passing fundamental and low harmonic frequencies occur. These illuminating insights reported in this paper provide valuable benchmark sea trial data in full scale.
ORCID iDs
Turkmen, Serkan, Aktas, Batuhan ORCID: https://orcid.org/0000-0001-7194-2976, Atlar, Mehmet, Sasaki, Noriyuki, Sampson, Rod and Shi, Weichao ORCID: https://orcid.org/0000-0001-9730-7313;-
-
Item type: Article ID code: 59327 Dates: DateEvent15 January 2017Published7 December 2016Published Online29 November 2016AcceptedSubjects: Naval Science > Naval architecture. Shipbuilding. Marine engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering
Strategic Research Themes > Ocean, Air and SpaceDepositing user: Pure Administrator Date deposited: 09 Jan 2017 12:48 Last modified: 11 Nov 2024 11:35 URI: https://strathprints.strath.ac.uk/id/eprint/59327