Modelling of the anomalous Doppler resonance for a laboratory experiment
Bryson, R. and Speirs, D. C. and King, M. and Vorgul, I. and Cairns, R. A. and Phelps, A. D. R. and Bingham, R. and McConville, S. L. and Gillespie, K. M. and Ronald, K.; Naulin, V. and Angioni, C. and Borghesi, M. and Ratynskaia, S. and Poedts, S. and Donné, T. and Kurki-Suonio, T. and Äkäslompolo, S. and Hakola, A. and Airila, M., eds. (2013) Modelling of the anomalous Doppler resonance for a laboratory experiment. In: 40th EPS Conference on Plasma Physics, EPS 2013. Europhysics Conference Abstracts, 2 . European Physical Society (EPS), FIN, pp. 1590-1593. ISBN 9782914771849 (http://ocs.ciemat.es/EPS2013PAP/pdf/P5.405.pdf)
Full text not available in this repository.Request a copyAbstract
The anomalous Doppler resonance is an instability that occurs due to coupling between an electromagnetic wave and a negative harmonic of the electron cyclotron frequency, as such this regime is only achievable in slow-wave media, including plasma.[1-2]In magnetic confinement fusion experiments the generation of fast electrons by Lower Hybrid Current Drive can lead to the criterion for which the anomalous Doppler resonance is fulfilled.[3]A simulation of non-thermal electrons drifting at relativistic velocities along a magnetic field with a background plasma has been developed in the 3D Particle-in-Cell code VORPAL. By tailoring the fast electron distribution so that the number density decreases as the velocity of the electrons increases suppression of the two-stream and Cherenkov instabilities can be achieved. From these experiments indications of the anomalous Doppler instability have been observed. An experiment to test the prediction of simulations is being developed at University of Strathclyde, with current work focussing on the production of energetic electrons to mimic the energetic tail critical to the anomalous Doppler instability. The results of the experiment will benchmark the code and be used to inform further simulations which will have parameters relevant to magnetic confinement fusion and astrophysical phenomena.
ORCID iDs
Bryson, R., Speirs, D. C. ORCID: https://orcid.org/0000-0001-5705-6126, King, M. ORCID: https://orcid.org/0000-0003-3370-6141, Vorgul, I., Cairns, R. A., Phelps, A. D. R. ORCID: https://orcid.org/0000-0002-1100-1012, Bingham, R. ORCID: https://orcid.org/0000-0002-9843-7635, McConville, S. L., Gillespie, K. M. and Ronald, K. ORCID: https://orcid.org/0000-0002-8585-0746; Naulin, V., Angioni, C., Borghesi, M., Ratynskaia, S., Poedts, S., Donné, T., Kurki-Suonio, T., Äkäslompolo, S., Hakola, A. and Airila, M.-
-
Item type: Book Section ID code: 59155 Dates: DateEvent1 July 2013PublishedSubjects: Science > Physics > Plasma physics. Ionized gases Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 16 Dec 2016 12:47 Last modified: 11 Nov 2024 15:04 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/59155