Prospective guidance in a free-swimming cell
Delafield-Butt, Jonathan and Pepping, Gert-Jan and McCaig, Colin and Lee, David (2012) Prospective guidance in a free-swimming cell. Biological Cybernetics, 106 (4-5). pp. 283-293. ISSN 0340-1200 (https://doi.org/10.1007/s00422-012-0495-5)
Full text not available in this repository.Request a copyAbstract
A systems theory of movement control in animals is presented and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory – General Tau Theory – is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) coordinated movement is achieved by keeping the relative rates of change of gaps in constant ratio. The theory is supported by studies of controlled movement in mammals, birds, and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This presents the first computational model of prospective perceptual control in a non-neural, single-celled system.
ORCID iDs
Delafield-Butt, Jonathan ORCID: https://orcid.org/0000-0002-8881-8821, Pepping, Gert-Jan, McCaig, Colin and Lee, David;-
-
Item type: Article ID code: 39807 Dates: DateEvent1 July 2012PublishedSubjects: Medicine > Internal medicine > Neuroscience. Biological psychiatry. Neuropsychiatry Department: Faculty of Humanities and Social Sciences (HaSS) > Strathclyde Institute of Education > Education Depositing user: Pure Administrator Date deposited: 29 May 2012 09:32 Last modified: 11 Nov 2024 10:08 URI: https://strathprints.strath.ac.uk/id/eprint/39807