Global wave loads on a damaged ship
Lee, Yongwon and Chan, Hoi-Sang and Pu, Yongchang and Incecik, Atilla and Dow, Robert S. (2012) Global wave loads on a damaged ship. Ships and Offshore Structures, 7 (3). pp. 237-268. ISSN 1754-212X (https://doi.org/10.1080/17445302.2011.588081)
Preview |
Text.
Filename: AI_Global_Wave_Loads_on_a_Damaged_Ship.pdf
Accepted Author Manuscript License: Download (4MB)| Preview |
Abstract
A computational tool was applied based on a two dimensional linear method to predict the hydrodynamic loads for damaged ships. Experimental tests on a ship model have also been carried out to predict the hydrodynamic loads in various design conditions. The results of the theoretical method and experimental tests are compared to validate the theoretical method. The extreme wave induced loads have been calculated by short term prediction. For the loads in intact condition, the prediction with duration of 20 years at sea state 5 is used, while for loads in damaged conditions the prediction in 96 hours exposure time at sea 3 is used. The maximum values of the most probable extreme amplitudes of dynamic wave induced loads in damaged conditions are much less than those in intact condition because of the reduced time. An opening could change the distribution of not only stillwater bending moment but also wave-induced bending moment. It is observed that although some cross sections are not structurally damaged, the total loads acting on these cross sections after damage may be increased dramatically compared to the original design load in intact condition.
-
-
Item type: Article ID code: 36069 Dates: DateEvent1 March 2012Published9 August 2011Published Online11 May 2011AcceptedSubjects: Naval Science > Naval architecture. Shipbuilding. Marine engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 22 Nov 2011 10:31 Last modified: 05 Jan 2025 03:23 URI: https://strathprints.strath.ac.uk/id/eprint/36069