Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

End-point control of a flexible-link manipulator using state-dependent Riccati equation technique

Shawky, A. and Petropoulakis, L. and Ordys, A.W. and Grimble, M.J. (2002) End-point control of a flexible-link manipulator using state-dependent Riccati equation technique. Archives of Control Sciences, 12 (3). pp. 191-207. ISSN 0004-072X

[img]
Preview
Text (strathprints007050)
strathprints007050.pdf
Accepted Author Manuscript

Download (524kB) | Preview

Abstract

The problem of modeling and controlling the tip position of a one-link flexible manipulator is considered. The paper discusses the control strategy based on the nonlinear state Dependent Ricatti Equation (SDRE) design method in the context of application to robotics and manufacturing systems. Lagrangian Mechanics and the Assumed Mode Method have been used to derive a proposed dynamic model of a single-link flexible manipulator having a revolute joint. The model may be used in general to investigate the motion of the manipulator in the horizontal plane rest-to-rest rotational maneuver. The nonlinear SDRE control law is derived as minimizing a quadratic cost function that penalizes the states and the control input torques. Simulation results are presented for a single-link flexible manipulator to achieve a desired angular rotation of the link while simultaneously suppressing structural vibrations, and the effect of payload on the system response and vibration frequencies is investigated. The results are illustrated by a numerical example.