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Abstract. The problem of modeling and controlling the tip position of a single-link flexible manipulator is considered. In a
flexible-link manipulator in general the effect of some parameters such as payload, friction amplitude and damping
coefficients can not be exactly measured, One possibility is to consider these parameters including uncertainty. Recent results
may then be applied on nonlinear robust regulators using a nonlinear H,, via state Dependent Ricatti Equation (SDRE) design
method. Lagrangian mechanics and the assumed mode method have been used to derive a proposed dynamic model of a
single-link flexible manipulator having a control joint. The full state feedback nonlinear H., SDRE contro] law is derived to
minimize a quadratic cost function that penalizes the states and the control input torques. Simulation results are presented for
a single-link flexible manipulator to achieve the desired angular rotation of the link whilst simultaneously suppressing
structural vibrations. The effect of payload on the system response and vibration frequencies is also investigated. The results

are illustrated by a numerical example.

1. Introduction

Flexible manipulator systems offer several advantages in
contrast to the traditional rigid manipulator. These include
faster response, lower energy consumption, requiring
relatively smaller actuators and lower overall mass and, in
general, lower overall cost [4]. However, due to its flexible
nature the control of the flexible system is to take into
account both the rigid body degree of freedom, and elastic
degrees of freedom. It is important to recognize the flexible
nature of the manipulator and construct a mathematical
model for the system that accounts for the interactions with
actuators and payload. The efficiency of a single-link
flexible manipulator moving at high speed and having a
payload is highly dependent on its dynamic behavior.
Lagrangian Mechanics and the Assumed Mode Method
have been used to drive a proposed dynamic model of a
single-link flexible manipulator having a revolute joint. The
link has been considered as an Euler-Bernoulli beam
subjected to large angular displacement. To establish a
model of a single-link flexible manipulator, the kinematics
of a single link flexible manipulator is described, here,
based on the equivalent rigid link system and a
transformation matrix method.

The overall motion of the flexible link manipulator consists
of the rigid body motion, which is defined by the joint
angle, and the elastic motion, which is defined by the first
two modal coordinates. The application of Lagrangian
equation yields two sets of equations. The first set is
associated with the Rigid Body degrees of freedom, and the
other set is associated with the Elastic degrees of freedom.
These two sets of equations of motion, for a single-link
flexible manipulator, are nonlinear time varying and
represented by coupled second order ordinary differential
equations. The flexible-link manipulator control problem is
complicated by the fact the dynamics of the system are
highly nonlinear and complex. As a result, theory has
emerged for design according to a number of methods,
including feedback linearization [11], variable structure

control [S], control Lyapunov functions [12], recursive
backstepping and nonlinear H,, control [9]. Although H,
techniques were originally proposed for linear systems, the
approach has also been studied for nonlinear systems. These
techniques can provide a robustness property in the
controller. The design of the nonlinear H, via state
Dependent Ricatti Equation (SDRE) technique based on the
SDRE technique [13] for nonlinear control, which has
recently appeared in the literature [1,6,7].

The main contribution of this paper is in adopting the full
state feedback nonlinear H,, SDRE approach to the needs of
the flexible manipulator system and then proving its value

* through tests on a fairly complex nonlinear simulation
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model. The outline of the paper is as follows: Section 2
provides a brief description of the dynamic model for a
single-link flexible manipulator, and the effect of payload
on the dynamic characteristics of the manipulator. Section 3
presents the nonlinear regulator problem. In section 4 the
design of the nonlinear H,, SDRE controller for a class of
nonlinear control systems is explained. Section 5 sets up the
problem of applying the nonlinear regulator to a single-link
flexible manipulator. Contro! of flexible manipulator in the
presence of varying payloads is investigated in Section 6. In
section 7 simulation results for a single-link flexible
manipulator are presented. Concluding remarks are given in
section 8.

2. Dynamic Model of Flexible Manipulator

The model of the flexible manipulator is obtained on basis
of Lagrange’s equations of motion [4], may be written as:
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where T is the kinetic energy, V potential energy, g;
generalized coordinate, and (; generalized force. The
application of Lagrange’s yields two sets of equations. The
first set is associated with the rigid body degree of freedom
defined by 0, and the other set is associated with the elastic



degrees of freedom defined by 5; . These two sets of

equations of motion for a single-link flexible manipulator,
are nonlinear time varying coupled, second order ordinary
differential equations. The generalized coordinates are
shown in Figure 1 for the single-link flexible manipulator.
Under the Assumed Modes Method and retaining a finite
number, m=2 of modes, the dynamic equations for the
flexible-link manipulator are derived as:
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where 6 =[5,,6,F e ®* is the deflection vector, 9e R is the
joint variable, M represents the inertia matrix, h=[rhyisJ
represents the vector of the Coriolis and centrifugal forces,
F is the Coulomb friction, » is the control input torque,
D=[D, 00,0, 0;00 D3 Je R#Dm+) represents the viscous

structural damping, and K =[000;04 0,004k, Je %lm+(m+1)
represents the stiffness matrix. Integer m is the number of
flexible modes (or equivalently the number of mode shape
functions), in our model m=2. Assuming that the beam
deflection is small compared to the link length L, the
normalized output may be written as.

m
1

y,(r)=9+7z]:¢,~(1)8.-

i=
where ¢;() represents the i mode shape. For the purpose of
design, simulation, and control the dynamic equations of
flexible-link manipulator (2) can be represented in the state-
space model form. A state vector is first

defined x()=[q () x()F where, [x,() - xs()F =lpé55f,
Therefore, model (2) may be written as.
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Figure 1. Geometric and Generalized Coordinates of a
flexible link
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3. Nonlinear Regulator Control Problem
In the nonlinear quadratic regulator problem the aim is to
minimize the infinite horizon cost function [14] of the form:

J=%T LTQ(x)x+uTR(x)u]dt (5)
to

With respect to the state x and control u subject to the
nonlinear constraint.

i =alx)+b(x)u 6)

Given state xe R" and control ue R™ , with a,bR,0eC* ,
k>1, where Q(x)=HT(x)H(x)20, and R(x)>0 for all x. It is
assumed that 4(0)=0 so that the origin is an equilibrium
point of the open loop system. We seek a stabilizing
solution in the form = =L(x)x where the nonlinear feedback
gain L is a matrix function of the state vector (x). The above
formulation is analogous to linear quadratic regulator
(LQR) theory [10] except that the matrices Q,R and L all
have elements that are allowed to be functions of the
state x . The SDRE method hinges on being able to write the
constraint dynamics (6) in a point-wise linear structure,
having a state-dependent coefficient (SDC) form.

%= A(x)x+B(x ) @)
So that a(x)= A(x)x and b(x)= B(x), it is also known that
there are an infinite number of ways to bring the nonlinear
system to SDC form. Associated with the SDC form the
following definitions apply:
e {H(x)4(x}}is an observable detectable parameterization
of the nonlinear system [in a region Q] if the pair
{H(x) 4(x} is point-wise observable (detectable) in the
linear sense for all [xe 2].
{4(x)B(x)} is controllable stabilizable parameterization
of the nonlinear system [in a region Q] if the pair
{4(x) B(x)} is point-wise controllable (stabilizable) in the
linear sense for all [xe 0].

4. Nonlinear H_ Control Via SDRE Method
In this section, the proposed methods for the nonlinear H.,
suboptimal control problem based on the SDRE technique
[13] are introduced. Solution approaches for input-affine
systems under both state and output feedback are proposed
in [6]. - :

4.1 Output Feedback
Consider the general nonlinear system:

%= fx)+ By (xw+ By (x ) ®)
z=cp (x)+ Dlz(x)l )
y=ca(x)+ Dy (x}w (10)

where xeR" , ueR™, weR™ all of the functions are
smooth (i.e., C'), Djp(x), and D,(x) have full rank,
Dly(x)D15(x)=%, and Dy ()0} (x)=R,, and f(0)=0, ,(0)=0
and B,{x)=0 for all x, z is the controlled output and y is the

measured output. The exogenous input signal w may
include tracking commands and/or disturbances. It is



desired to bound the L,-gain of the system. For y>0, the
system (8)-(10) has L,-gain less than or equal to v if:

T T
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for all T7>0 and all we L,(0,T). If a controller can be

found such that the closed loop system is internally stable
and such that the inequality (11) is satisfied, the exogenous
signals will be locally attenuated by y. The inequality (11)
can be satisfied by solving the nonlinear max-min
differential game problem.
max min

L0 a L0
wel,, uely, 0

subject to the constraints (8)—(10). The SDRE approach for
" obtaining an approximate solution of the nonlinear H,,
problem is:

(11)

(12)

4.1.1Use direct parameterization to bring the nonlinear
dynamic to the SDC form:

%= A(x)+ B (x)w+ By (x )k (13)
z2=Cyc}e+Dyp(xk (14)
y=Cylxk+ Dy lx}w (15)

Assumption: (4,8,)(4,B,) and (C,4)(C2,4) are pointwise
stabilizable and detectable in the linear sense, respectively,
for x € Q, where Q is the region of interest which may be
the entire space.

4.1.2 With y sufficiently large so that the solutions
P(%)20,0(*)20 exist with Ay [P(E)2(%)]<7?, solve the state-

dependent Riccati equations which are given below in terms
of their state-dependent Hamiltonian matrices:

A-ByR;'DI.Cy  v2BBT - ByR;'BT
-¢r¢ - (A -ByR;'phcy )T

] (16)

(A -B DI R;lC, )T r2clc -cIr;lc
-BBT - A—BIDZTIR;‘CJ

] a7

B =5 (1 - DleR;/]DZl ) G = (1 - DlzRE]Dﬂ h
4.1.3 Construct the SDRE nonlinear H,, feedback controller

via:
= Ao+ Bo )y
u=FRE)

Ay=A+ByF+y2BBT P+ ZL(CZ +772Dy BT P)

2el-riar)

— T T -1
= (QCZ +BID21 W

(18)
19)

By=-2ZL
F=-r;'(8TP+DTc,)

4.2 Full State Information
In this case of full state information, equations (10) and (17)
disappear along with the observer equation (18) and the
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static nonlinear controller is given by equation (19) where
x=x.

4.2.1 Parametrize (8) in SDC form equations (13)-(15).
42.2 Solve the H,, SDRE.

ATP+PA—P[BZBZT ——;z-GGT ]P+C1T ¢ =0 (20)

All matrices here are functions of the state x but it is
omitted here for simplicity. The y is assumed sufficiently
large so that the stability and complementarily properties
hold in order to obtain P(x)>0V x.
4.2.3 Construct the nonlinear H,, feedback control via:
u(x)=-B] (x)P(x)x @
The local stability of the closed loop system resulting from
using the SDRE nonlinear regulator technique is determined
by the following theorems from [6].
Theorem Consider (8) and assume ze ®°,G{0)=0. Also
assume that all mappings in (8-10) are C” and that
{c1(0), 40} is detectable and {c,(0)B(0)} is stabilizable. Then
the state feedback SDRE design procedure given by (20)

yields a local solution to the nonlinear H,, contro! problem
for (8).

5. Application to a Single-Link Flexible Manipulator

In this section the application of the nonlinear H, via
SDRE control algorithm to design a robust regulator for
flexible-link manipulator is discussed. In this paper the
method is applied to a single-link flexible manipulator. For
the purpose of design, first augment the dynamics of the
exosystem with the manipulator dynamics and then define
the error as the difference between the regulated output and
the exosystem output. Note that the design technique used
in this paper involves state feedback. Consequently, for
simplicity of design, the first state is taken as the output,
i.e., the hub position. The effect of rotary inertia and shear
deformation is ignored by assuming that the cross-sectional
area of the link is small in comparison with its length. For
the purpose of design, the dynamic equations of flexible-
link manipulator (2) can be represented in the state-space
model form. By choosing [8,,6,,5,,5,,585,8,] as the
state vector and the tip position as the output, we may write
the dynamics of the manipulator augmented with the
exosystem in the form:

X =x

x3 = file1,%2,%3,%4,%5, %6, W)+ g1 (3, x5

X3 = X4

x4 = f200,%2,%3,%4,%5, %6, W)+ g2 (3, x5

X5 =Xg

i6 =f3(x1,x2,X3,X4,x5,x6,w)+g3(x3,x5)1

e=X| = Xpof

z= [e,u]r
and the tip position given by:

y =31 +kgip (Crx3 + Caxs)

(22)

where Ky, C;, C; are constants, depending on the arm
characteristics, and w is the vector of uncertainties that



represent the deviations of parameters from their nominal
values. For instance, the inertia matrix is a function of the
load mass Mp . Therefore, in deriving the state-space
equations, we need to take into account that the uncertainty
on the load mass does not propagate throughout the system
dynamics. To consider this uncertainty, one may assume
that [3].

Mp=Mpy(i+w) (23)
where Mpy is the nominal value of the load mass and w; is
an L, bounded disturbance acting on it. Note that here are
several parameters that may have uncertain values. The
amplitude of a sigmoidal function that models the Coulomb
friction, the value of hub damping for each joint and/or the
value of structural damping due to link flexibility are a few
examples.

The design approach used is the nonlinear H,, via SDRE
technique where the objective is to attenuate the
disturbances on the controlled output so that the exogenous
input are selected to have bounded energy. Therefore, any
bounded signal with a compact support can enter the system
as a disturbance. Consequently, in the non-affine model
(22) with respect to the exogenous input w, all deviations
must be L, bounded. Based on the results developed in the
preceding sections, a nonlinear controller was designed to
attenuate the effect of disturbances on the controller output
for the flexible-link manipulator described above. The
procedure for designing a nonlinear robust regulator for a
flexible-link manipulator is as follows:

Step 1. Construct the state space model as in (22).

Step 2. Parameterize (22) in SDC form (13).

Step 3. Solve the state feedback nonlinear H, SDRE
algebraic Riccati equation (20) for P.

Step 4. Construct the nonlinear H,, feedback control via
21).

6. Simulations and Discussion

As mentioned earlier, the main objective is to control the tip
position of a single-link flexible manipulator robustly.
Simulations were performed in Matlab/Simulink using
Runge-Kutta, fourth-order numerical integration to
implement and design the nonlinear controller. The purpose
of the simulation is to demonstrate the performance of the
developed model and controller algorithm in analyzing the
effects of manipulator flexibility, and payload on the
dynamic behavior of the system. A simulated example is
described in this section. To- implement this, consider that
the flexible link rotates on the horizontal plane i.e., the axis
of rotation is vertical, the geometric and mass properties of
the flexible manipulator are: length L=Im, mass density
p=7842 kg/m’, Young Modulus E=2x10" Nm, area
moment of inertia 7=20x10""' m’, and cross-sectional area
A=9x10"° m’.

Before developing the control design, we study the open
loop response of the flexible manipulator system. The
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flexible manipulator is excited with a bang-bang input
torque profile of amplitude 1 [Nm)], shown in Figure 2. This
torque was applied at the hub of the manipulator. The
system variables considered here are: the joint angle 6, the
tip deflection v, and the tip position y with no payload as
shown in Figure 2. In the stability analysis, consider the
unforced system (i.e., u=0):
i=f(x) 24

The stability of this system may be examined around the
origin via the techniques of linearization and first integrals
[10], by the so-called Principle of Stability in the First
Approximation. If it is assumed that f(x) is at least twice
continuously differentiable and that the equilibrium of
interest is the origin, then the following statements can be
made about the local asymptotic stability of (23) based on
the linear approximation of f(x)arx=0:

af]
J,{__
dx x=0

Denote the Jacobian matrix of f(x) at x = 0. Then if

(25)

All the eigenvalues of J, have negative real parts, the
origin is a locally asymptotically stable equilibrium of
(22),

At least one eigenvalue of J, has a positive real part;
the origin is an unstable equilibrium of (22).

The Principle of Stability in the First Approximation
obviously does not cover all cases of interest. In particular,
it provides no information when all of the real parts of the
eigenvalues of J, are nonpositive, and at least one
eigenvalues has a zero real part. When this is the case,
“Center Manifold Theory” may often be used to draw
conclusions regarding the local stability properties of an
equilibrium point for a time-invariant system. We also
know that for any SDC dynamic parameterization
flx)=4(xx of (24), 4(0) must equal the Jacobian of f
evaluated at zero, so that this necessary condition becomes
that the pair {/,,B(0)} is stabilizable. Computing the
Jacobian J, of (22) at the origin obtains:

0 0 0 0 0 0

1 0 0 0 0 0
{0 100087 0 -419847 0 9249.11

270 0 1 0 0 0
0 —-452323 0 188890 O -492333

0 0 0 0 1 0

The eigenvalues of J, are {0,0,0+60.45,0£2959i}. We can
see that all eigenvalues have zero real part, but in fact the
damping effects on a flexible manipulator push the
eigenvalues of J,, to be negative real parts. 4(0) is equal to
the Jacobian of fevaluated at zero. So the origin is a locally
asymptotically stable equilibrium of (22). Based on the
results obtained in the preceding sections, and the
simulation results from the dynamic model of the



single-link flexible manipulator, the nonlinear H,, SDRE
controller technique was designed and implemented in
Matlab/Simulink to control the output of the single-link
flexible manipulator without the addition of a payload at the
free end. For comparison purposes we fix the attenuation
factor, y=10, which is one of the controlling parameters
affecting the performance of the closed-loop system, and
varying the state weighting matrices 0. We report here
some simulation results obtained for the single-link flexible
arm described above via nonlinear H,, SDRE controller
technique.

Figure 3 shows the closed loop output response of the tip
position, and tip deflection for a step input with amplitude
of 1.0. As can be observed, a considerable good tracking,
and smallest settling time of the tip position for the step
input is achieved. The tip deflection is completely damped
after 0.65 sec. Indeed, we see that the nonlinear H,, SDRE
regulator is an effective way of direct handling of unstable
non-minimum phase systems, the simple way to adjust the
control and state weighting matrices, and also offers
significant design flexibility while yielding closed loop
stability. As in other optimal control algorithms the
controlled output may be weighted with respect to the
disturbance for obtaining a faster response. Since the cost
function is of quadratic type, increasing the weighting on
the output state result in a more damped response, and more
emphasis on rise time, decreasing the weighting on the
output state result in a more overshoot response, and lower
rise time.

7. Control of Flexible Manipulator in the Presence of
Varying Payloads

In previous sections control of the flexible manipulator was
set without the effect of payload at the free end. However,
the payload is a very important parameter for the design and
control of a flexible manipulator. Changes in payload mass
result in changes in the dynamic performance of the arm, an
important objective of the manipulator mechanical and
control design is to increase its payload. It is anticipated,
however, that the increase of payload will be accompanied
by an increase of the elastic displacement and the residual
vibration after performing a maneuver. In this section the
nonlinear H,, SDRE controller is applied to control the
flexible manipulator system for three-different ratios, of the
payload mass to the mass of the arm, m,/m=0,0.25,0.5.
where mp mass of the payload, and m mass of the flexible

link.

For the purpose of comparison, we use the same attenuation
factor 7, and the state weighting Q respectively: as for case
without payload in previous section. But we now change
the fixed payload mass at the free end of the flexible
manipulator. To facilitate comparison between cases, we
start the simulations from the same initial conditions, we
again sample at 7=0.005 seconds, and we use A(x)

parameterization given by (7) for all simulation cases. As a
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final basis of comparison, we show the plots for the three
cases in Figure 4. In this figure, the solid lines represents

‘the case without payload, dashed lines represent the case,

m,/m=0.25, and doted lines represent case, m,/m=0.5. As
expected, all of the outputs of the hub displacement, and tip
displacement of the three cases are asymptotically
approaching the value of one as desired.

Two things are immediately apparent from the figure. Note
first of all that increasing the mass ratio, m,/m, increases the
settling time. The second thing is the increase in the
amplitude of overshoot as the ratio, m,/m increase.
However, overall, the increase in the payload was handled
sufficiently well by the nonlinear H,, SDRE controller.

8. Conclusions

The Lagrange mechanics and the assumed mode method
have been used to derive a proposed dynamic model of a
single-link flexible manipulator having a revolute joint. The
model is valid for an arbitrary number of deflection modes.
The model may be used to investigate the motion of the
manipulator in the horizontal and vertical planes. The
proposed model has been used to investigate the effect of
two main design parameters, the payload, and the open loop
control torque profile. The results of the investigation show
that as long as the rest-to-rest rotational maneuver is
considered, the payload has a dominant effect on the elastic
deflection of the manipulator. In general, in a flexible-link
manipulator, the system parameters may not be known
exactly a priori. Consequently, this will introduce
significant uncertainties in the robot’s dynamic model.

The uncertainties considered in this paper are the deviations
of parameters from their nominal values. The focus was on
providing a theoretical basis for the control of nonlinear
systems via the state feedback nonlinear H, via SDRE
techniques, which, have proven quite successful in a
number of simulated applications, including the control of
single-link flexible manipulator. The proposed control
methodology is based on minimizing the effect of the
disturbance on the tip position.

Extra design degrees of freedom arising from the
non-uniqueness of the SDC parameterization can be utilized
to enhance controller performance and the nonlinear H,, via
SDRE method does not cancel beneficial nonlinearities. It
was shown that the proposed model and controller, under
certain relatively mild conditions, renders the origin a
locally asymptotically stable equilibrium point. Additional
results in the paper show that the regulator is near optimal.
Throughout this paper, it was assumed that all the states of
the plant were available for measurement. Obviously some
of these states are available via standard sensors (such as
hub angle, hub velocity and tip position). Other states may
require more sophisticated sensors or the introduction of
observers.
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