Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Assessing domestic heat storage requirements for energy flexibility over varying timescales

Allison, John and Bell, Keith and Clarke, Joe and Cowie, Andrew and Elsayed, Ahmed and Flett, Graeme and Oluleye, Gbemi and Hawkes, Adam and Hawker, Graeme and Kelly, Nick and Manuela Marinho de Castro, Maria and Sharpe, Tim and Shea, Andy and Strachan, Paul and Tuohy, Paul (2018) Assessing domestic heat storage requirements for energy flexibility over varying timescales. Applied Thermal Engineering, 136. pp. 602-616. ISSN 1359-4311

[img]
Preview
Text (Allison-etal-ATE2018-Assessing-domestic-heat-storage-requirements-for-energy)
Allison_etal_ATE2018_Assessing_domestic_heat_storage_requirements_for_energy.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

This paper explores the feasibility of storing heat in an encapsulated store to support thermal load shifting over three timescales: diurnal, weekly and seasonal. A building simulation tool was used to calculate the space heating and hot water demands for four common UK housing types and a range of operating conditions. A custom sizing methodology calculated the capacities of storage required to fully meet the heat demands over the three timescales. Corresponding storage volumes were calculated for a range of heat storage materials deemed suitable for storing heat within a dwelling, either in a tank or as an integral part of the building fabric: hot water, concrete, high-temperature magnetite blocks, and a phase change material. The results indicate that with low temperature heat storage domestic load shifting is feasible over a few days, beyond this timescale the very large storage volumes required make integration in dwellings problematic. Supporting load shifting over 1-2 weeks is feasible with high temperature storage. Retention of heat over periods longer than this is challenging, even with significant levels of insulation. Seasonal storage of heat in an encapsulated store appeared impractical in all cases modelled due to the volume of material required.