Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Nanoscale fissure formation in AlxGa1–xN/GaN heterostructures and their influence on Ohmic contact formation

Smith, M. D. and Thomson, D. and Zubialevich, V. Z. and Li, H. and Naresh-Kumar, G. and Trager-Cowan, C. and Parbrook, P. J. (2017) Nanoscale fissure formation in AlxGa1–xN/GaN heterostructures and their influence on Ohmic contact formation. Physica Status Solidi A, 214 (1). ISSN 1862-6300

[img]
Preview
Text (Smith-etal-PSSA-2017-Nanoscale-fissure-formation-in-AlxGa1–xN-GaN-heterostructures)
Smith_etal_PSSA_2017_Nanoscale_fissure_formation_in_AlxGa1_xN_GaN_heterostructures.pdf
Accepted Author Manuscript

Download (335kB)| Preview

    Abstract

    Nanoscale surface fissures on AlxGa1–xN/GaN (15 nm/1 µm) heterostructures grown by metalorganic vapour phase epitaxy (MOVPE) were imaged using tapping-mode atomic force microscopy (AFM) and electron channelling contrast imaging (ECCI). Fissure formation was linked to threading dislocations, and was only observed in samples cooled under H2 and NH3, developing with increasing barrier layer Al content. No strain relaxation was detected regardless of fissure formation up to barrier layer Al composition fractions of x = 0.37. A reduction of measured channel carrier density was found in fissured samples at low temperature. This instability is attributed to shallow trap formation associated with fissure boundaries. For Ti/Al/Ni/Au Ohmic contact formation to high Al content barrier layers, fissures were found to offer conduction routes to the 2DEG that allow for low resistance contacts, with fissure-free samples requiring additional optimisation of the metal stack and anneal conditions to achieve contact resistivity of order those measured in fissured samples. In addition, the effects of fissures were found to be detrimental to thermal stability of sheet and contact resistance, suggesting that fissure formation compromises the integrity of the 2DEG.