Visual feature binding in younger and older adults : encoding and suffix interference effects
Brown, Louise A. and Niven, Elaine H. and Logie, Robert H. and Rhodes, Stephen and Allen, Richard J. (2017) Visual feature binding in younger and older adults : encoding and suffix interference effects. Memory, 25 (2). pp. 261-275. ISSN 0965-8211 (https://doi.org/10.1080/09658211.2016.1156705)
Text.
Filename: Brown_etal_Memory_2016_Visual_feature_binding_in_younger_and_older_adults.pdf
Final Published Version License: Download (1MB) |
Abstract
Three experiments investigated younger (18–25 yrs) and older (70–88 yrs) adults’ temporary memory for colour–shape combinations (binding). We focused upon estimating the magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference (Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer binding performance with sequential relative to simultaneous presentation, and serial position analyses highlighted a particular age-related difficulty remembering the middle item of a series (for all memory conditions). Experiments 1–3 demonstrated small to medium binding effect sizes in older adults across all encoding conditions, with binding less accurate than shape memory. However, younger adults also displayed negative effects of binding (small to large) in two of the experiments. Even when older adults exhibited a greater suffix interference effect in Experiment 3, this was for all memory types, not just binding. We therefore conclude that there is no consistent evidence for a visual binding deficit in healthy older adults. This relative preservation contrasts with the specific and substantial deficits in visual feature binding found in several recent studies of Alzheimer's disease.
ORCID iDs
Brown, Louise A. ORCID: https://orcid.org/0000-0003-3520-6175, Niven, Elaine H., Logie, Robert H., Rhodes, Stephen and Allen, Richard J.;-
-
Item type: Article ID code: 55922 Dates: DateEvent1 January 2017Published16 March 2016Published Online15 February 2016AcceptedNotes: 1. Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135, 298–313. doi:10.1037/0096-3445.135.2.298 [CrossRef], [PubMed], [Web of Science ®] 2. Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 40, 1499–1509. doi:10.1037/xlm0000002 [CrossRef], [PubMed], [Web of Science ®] 3. Allen, R. J., Brown, L. A., & Niven, E. (2013). Aging and visual feature binding in working memory. In H. St Clair-Thompson (Ed.), Working memory: Developmental differences, component processes, and improvement mechanisms (pp. 83–96). Hauppauge, NY: Nova Science. 4. Allen, R. J., Castellà, J., Ueno, T., Hitch, G. J., & Baddeley, A. D. (2015). What does visual suffix interference tell us about spatial location in working memory? Memory & Cognition, 43, 133–142. doi:10.3758/s13421-014-0448-4 [CrossRef], [PubMed], [Web of Science ®] 5. Allen, R. J., Hitch, G. J., Mate, J., & Baddeley, A. D. (2012). Feature binding and attention in working memory: A resolution of previous contradictory findings. The Quarterly Journal of Experimental Psychology, 65, 2369–2383. doi:10.1080/17470218.2012.687384 [Taylor & Francis Online], [PubMed], [Web of Science ®] 6. Baddeley, A. D. (2007). Working memory, thought and action. Oxford: Oxford University Press. [CrossRef] 7. Baddeley, A. D., Allen, R. J., & Hitch, G. H. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49, 1393–1400. doi:10.1016/j.neuropsychologia.2010.12.042 [CrossRef], [PubMed], [Web of Science ®] 8. Borg, C., Leroy, N., Favre, E., Laurent, B., & Thomas-Antérion, C. (2011). How emotional pictures influence visuospatial binding in short-term memory in ageing and Alzheimer's disease? Brain and Cognition, 76, 20–25. doi:10.1016/j.bandc.2011.03.008 [CrossRef], [PubMed], [Web of Science ®] 9. Braver, T. S., & West, R. L. (2008). Working memory, executive control, and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (3rd ed., pp. 311–372). New York, NY: Psychology Press. 10. Brockmole, J. R., & Logie, R. H. (2013). Age-related change in visual working memory: A study of 55,753 participants aged 8 to 75. Frontiers in Perception Science, 4(12). doi:10.3389/fpsyg.2013.00012 [CrossRef] 11. Brockmole, J. R., Parra, M. A., Della Sala, S., & Logie, R. H. (2008). Do binding deficits account for age-related decline in visual working memory? Psychonomic Bulletin & Review, 15, 543–547. doi:10.3758/PBR.15.3.543 [CrossRef], [PubMed], [Web of Science ®] 12. Brown, L. A., & Brockmole, J. R. (2010). The role of attention in binding visual features in working memory: Evidence from cognitive ageing. The Quarterly Journal of Experimental Psychology, 63, 2067–2079. doi:10.1080/17470211003721675 [Taylor & Francis Online], [Web of Science ®] 13. Buckner, R. L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195–208. doi:10.1016/j.neuron.2004.09.006 [CrossRef], [PubMed], [Web of Science ®] 14. Chen, T., & Naveh-Benjamin, M. (2012). Assessing the associative deficit of older adults in long-term and short-term/working memory. Psychology and Aging, 27, 666–682. doi:10.1037/a0026943 [CrossRef], [PubMed], [Web of Science ®] 15. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. doi:10.1146/annurev.psych.093008.100427 [CrossRef], [PubMed], [Web of Science ®] 16. Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. 17. Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature-binding difficult? Developmental Psychology, 42, 1089–1102. doi:10.1037/0012-1649.42.6.1089 [CrossRef], [PubMed], [Web of Science ®] 18. Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, NY: Routledge. 19. Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25, 7–29. doi:10.1177/0956797613504966 [CrossRef], [PubMed], [Web of Science ®] 20. Della Sala, S., Parra, M. A., Fabi, K., Luzzi, S., & Abrahams, S. (2012). Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia, 50, 833–840. doi:10.1016/j.neuropsychologia.2012.01.018 [CrossRef], [PubMed], [Web of Science ®] 21. Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242. doi:10.1037/h0044139 [CrossRef], [Web of Science ®] 22. Fandakova, Y., Sander, M. C., Werkle-Bergner, M., & Shing, Y. L. (2014). Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychology and Aging, 29, 140–149. doi:10.1037/a0035347 [CrossRef], [PubMed], [Web of Science ®] 23. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. doi:10.1016/0022-3956(75)90026-6 [CrossRef], [PubMed], [Web of Science ®] 24. Foos, P. W. (1989). Adult age differences in working memory. Psychology and Aging, 4, 269–275. doi:10.1037/0882-7974.4.3.269 [CrossRef], [PubMed], [Web of Science ®] 25. Foos, P. W., & Wright, L. (1992). Adult age differences in the storage of information in working memory. Experimental Aging Research, 18, 51–57. doi:10.1080/03610739208253911 [Taylor & Francis Online], [PubMed], [Web of Science ®] 26. Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating or working memory resources for visual objects. The Journal of Neuroscience, 31, 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011 [CrossRef], [PubMed], [Web of Science ®] 27. Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40, 1665–1678. doi:10.1037/a0037163 [CrossRef], [PubMed], [Web of Science ®] 28. Isella, V., Molteni, F., Mapelli, C., & Ferrarese, C. (2015). Short term memory for single surface features and bindings in ageing: A replication study. Brain and Cognition, 96, 38–42. doi:10.1016/j.bandc.2015.02.002 [CrossRef], [PubMed], [Web of Science ®] 29. Jaswal, S., & Logie, R. H. (2011). Configural encoding in visual feature binding. Journal of Cognitive Psychology, 23, 586–603. doi:10.1080/20445911.2011.570256 [Taylor & Francis Online], [Web of Science ®] 30. Johnson, W., Logie, R. H., & Brockmole, J. R. (2010). Working memory tasks differ in factor structure across age cohorts: Implications for dedifferentiation. Intelligence, 38, 513–528. doi:10.1016/j.intell.2010.06.005 [CrossRef], [Web of Science ®] 31. Kilb, A., & Naveh-Benjamin, M. (2007). Paying attention to binding: Further studies assessing the role of reduced attentional resources in the associative deficit of older adults. Memory & Cognition, 35, 1162–1174. doi:10.3758/BF03193486 [CrossRef], [PubMed], [Web of Science ®] 32. Larsen, J. D., & Baddeley, A. (2003). Disruption of verbal STM by irrelevant speech, articulatory suppression, and manual tapping: Do they have a common source? The Quarterly Journal of Experimental Psychology, 56, 1249–1268. doi:10.1080/02724980244000765 [Taylor & Francis Online], [Web of Science ®] 33. Li, S.-C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15, 155–163. doi:10.1111/j.0956-7976.2004.01503003.x [CrossRef], [PubMed], [Web of Science ®] 34. Logie, R. H. (2011). The functional organization and capacity limits of working memory. Current Directions in Psychological Science, 20, 240–245. doi:10.1177/0963721411415340 [CrossRef], [Web of Science ®] 35. Logie, R. H., Brockmole, J. R., & Jaswal, S. (2011). Feature binding in visual working memory is unaffected by task-irrelevant changes of location, shape and color. Memory and Cognition, 39, 24–36. doi:10.3758/s13421-010-0001-z [CrossRef], [PubMed], [Web of Science ®] 36. Logie, R. H., Brockmole, J. R., & Vandenbroucke, A. R. E. (2009). Bound feature combinations in visual short-term memory are fragile but influence long-term learning. Visual Cognition, 17, 160–179. doi:10.1080/13506280802228411 [Taylor & Francis Online], [Web of Science ®] 37. Logie, R. H., Horne, M. J., & Pettit, L. D. (2015). When cognitive performance does not decline across the lifespan. In R. H. Logie & R. Morris (Eds.), Working memory and ageing (pp. 21–47). Hove: Psychology Press. 38. Logie, R. H., Parra, M. A., & Della Sala, S. (2015). From cognitive science to dementia assessment. Policy Insights from the Behavioral and Brain Sciences, 2, 81–91. doi:10.1177/2372732215601370 [CrossRef] 39. Lustig, C., Hasher, L., & Zacks, R. (2007). Inhibitory deficit theory: Recent developments in a “new view". In D. S. Gorfein & C. M. MacLeod (Eds.), The place of inhibition in cognition (pp. 145–162). Washington, DC: American Psychological Association. doi:10.1037/11587-008 [CrossRef] 40. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D'Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206. doi:10.1016/S0926-6410(00)00029-X [CrossRef], [PubMed] 41. Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M., & D'Esposito, M. (2000). Aging and reflective processes of working memory: Binding and test load deficits. Psychology and Aging, 15, 527–541. doi:10.1037//0882-7974.15.3.527 [CrossRef], [PubMed], [Web of Science ®], [CSA] 42. Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for common designs [computer software manual]. Retrieved from http://CRAN.R-project.org/package=BayesFactor (R package version 0.9.11-1). 43. Murre, J. M. J., Wolters, G., & Raffone, A. (2006). Binding in working memory and long term memory: Towards an integrated model. In H. D. Zimmer, A. Mecklinger, & U. Lindenberger (Eds.), Handbook of binding and memory: Perspectives from cognitive neuroscience (pp. 221–250). Oxford: Oxford University Press. [CrossRef] 44. Naveh-Benjamin, M. (2000). Adult age-differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170–1187. doi:10.1037/0278-7393.26.5.1170 [CrossRef], [PubMed], [Web of Science ®], [CSA] 45. Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22, 202–208. doi:10.1037/0882-7974.22.1.202 [CrossRef], [PubMed], [Web of Science ®] 46. Naveh-Benjamin, M., Guez, J., & Shulman, S. (2004). Older adults’ associative deficit in episodic memory: Assessing the role of decline in attentional resources. Psychonomic Bulletin & Review, 11, 1067–1073. doi:10.3758/BF03196738 [CrossRef], [PubMed], [Web of Science ®] 47. Old, S. R., & Naveh-Benjamin, M. (2008a). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23, 104–118. doi:10.1037/0882-7974.23.1.104 [CrossRef], [PubMed], [Web of Science ®] 48. Old, S. R., & Naveh-Benjamin, M. (2008b). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging, 23, 467–472. doi:10.1037/0882-7974.23.2.467 [CrossRef], [PubMed], [Web of Science ®] 49. Park, C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17, 299–320. doi:10.1037/0882-7974.17.2.299 [CrossRef], [PubMed], [Web of Science ®], [CSA] 50. Parra, M. A., Abrahams, S., Fabi, K., Logie, R. H., Luzzi, S., & Della Sala, S. (2009). Short-term memory binding deficits in Alzheimer's disease. Brain, 132, 1057–1066. doi:10.1093/brain/awp036 [CrossRef], [PubMed], [Web of Science ®] 51. Parra, M. A., Abrahams, S., Logie, R. H., & Della Sala, S. (2009). Age and binding within-dimension features in visual short-term memory. Neuroscience Letters, 449, 1–5. doi:10.1016/j.neulet.2008.10.069 [CrossRef], [PubMed], [Web of Science ®] 52. Parra, M. A., Abrahams, S., Logie, R. H., & Della Sala, S. (2010). Visual short-term memory binding in Alzheimer's disease and depression. Journal of Neurology, 257, 1160–1169. doi:10.1007/s00415-010-5484-9 [CrossRef], [PubMed], [Web of Science ®] 53. Parra, M. A., Abrahams, S., Logie, R. H., Mendez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer's disease. Brain, 133, 2702–2713. doi:10.1093/brain/awq148 [CrossRef], [PubMed], [Web of Science ®] 54. Parra, M. A., Della Sala, S., Logie, R. H., & Morcom, A. (2014). Neural correlates of shape-color binding in visual working memory. Neuropsychologia, 52, 27–36. doi:10.1016/j.neuropsychologia.2013.09.036 [CrossRef], [PubMed], [Web of Science ®] 55. Pearson Education, Inc. (2009). Test of premorbid functioning – UK edition. London: Pearson Assessment. 56. Peich, M., Husain, M., & Bays, P. M. (2013). Age-related decline of precision and binding in visual working memory. Psychology and Aging, 28, 729–743. doi:10.1037/a0033236 [CrossRef], [PubMed], [Web of Science ®] 57. Pilotti, M., Beyer, T., & Yasunami, M. (2002). Top-down processing and the suffix effect in young and older adults. Memory & Cognition, 30, 89–96. doi:10.3758/BF03195268 [CrossRef], [PubMed], [Web of Science ®], [CSA] 58. R Core Team. (2015). R: A language and environment for statistical computing [computer software manual]. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ 59. Read, C. A., Rogers, J. M., & Wilson, P. H. (2015). Working memory binding of visual object features in older adults. Aging, Neuropsychology, and Cognition. doi:10.1080/13825585.2015.1083937 [Taylor & Francis Online], [PubMed], [Web of Science ®] 60. Rhodes, S., Parra, M. A., & Logie, R. H. (2016). Ageing and feature binding in visual working memory: The role of presentation time. The Quarterly Journal of Experimental Psychology, 69, 654–668. doi: 10.1080/17470218.2015.1038571 [Taylor & Francis Online], [PubMed], [Web of Science ®] 61. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi:10.1016/j.jmp.2012.08.001 [CrossRef], [Web of Science ®] 62. Salthouse, T. A. (1992). The influence of processing speed on adult age differences in working memory. Acta Psychologica, 79, 155–170. doi:10.1016/0001-6918(92)90030-H [CrossRef], [PubMed], [Web of Science ®], [CSA] 63. Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8, 535–543. doi:10.1037/0894-4105.8.4.535 [CrossRef], [CSA] 64. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428. doi:10.1037/0033-295X.103.3.403 [CrossRef], [PubMed], [Web of Science ®], [CSA] 65. Sander, M. C., Lindenberger, U., & Werkle-Bergner, M. (2012). Lifespan age differences in working memory: A two-component framework. Neuroscience and Biobehavioral Reviews, 36, 2007–2033. doi:10.1016/j.neubiorev.2012.06.004 [CrossRef], [PubMed], [Web of Science ®] 66. Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Binding and strategic selection in working memory: A lifespan dissociation. Psychology and Aging, 26, 612–624. doi:10.1037/a0023055 [CrossRef], [PubMed], [Web of Science ®] 67. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149. doi:10.3758/BF03207704 [CrossRef], [PubMed], [CSA] 68. Ueno, T., Allen, R. J., Baddeley, A. D., Hitch, G. J., & Saito, S. (2011). Disruption of visual feature binding in working memory. Memory & Cognition, 39, 12–23. doi:10.3758/s13421-010-0013-8 [CrossRef], [PubMed], [Web of Science ®] 69. Ueno, T., Mate, J., Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2011). What goes through the gate? Exploring interference with visual feature binding. Neuropsychologia, 49, 1597–1604. doi:10.1016/j.neuropsychologia.2010.11.030 [CrossRef], [Web of Science ®] 70. Vaughan, L., & Hartman, M. (2010). Aging and visual short-term memory: Effects of object type and information load. Aging, Neuropsychology, & Cognition, 17, 35–54. doi:10.1080/13825580903009063 [Taylor & Francis Online], [PubMed], [Web of Science ®] 71. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. doi:10.1037//0096-3445.131.1.48 [CrossRef], [PubMed], [Web of Science ®] Subjects: Philosophy. Psychology. Religion > Psychology Department: Faculty of Humanities and Social Sciences (HaSS) > Psychological Sciences and Health > Psychology
Strategic Research Themes > Health and WellbeingDepositing user: Pure Administrator Date deposited: 17 Mar 2016 12:36 Last modified: 18 Nov 2024 13:39 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/55922