Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A new synthesis of alkene-containing minor-groove binders and essential hydrogen bonding in binding to DNA and in antibacterial activity

Anthony, N.G. and Breen, D. and Donoghue, G. and Khalaf, A.I. and Mackay, S.P. and Parkinson, J.A. and Suckling, C.J. (2009) A new synthesis of alkene-containing minor-groove binders and essential hydrogen bonding in binding to DNA and in antibacterial activity. Organic and Biomolecular Chemistry, 7 (9). pp. 1843-1850. ISSN 1477-0520

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A practical synthesis of alkene-containing minor-groove binders for DNA, related to distamycin, with potential for wide structural diversity is described, based upon the Wittig chemistry of N-alkylpyrrole aldehydes. The compounds prepared have been evaluated for binding to DNA by physical methods (melting temperature and NMR) and for their antibacterial activity. Significantly, it was found that alkenes linking the aryl head group of the minor-groove binder promote strong binding to DNA and high antibacterial activity against Gram-positive bacteria. Conversely, a minor-groove binder containing an alkene located towards the alkylamino tail group has a low affinity for DNA and does not show antibacterial activity. These observations suggest an important role for specific hydrogen bonds in the binding of compounds of this type to DNA, and in their antibacterial activity.