Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages

Thi, M.D. and Grant, M.H. and Mullen, Alexander B. and Tettey, J.N.A. and Mackay, S.P. and Clark, Rachael L. (2009) Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages. Journal of Pharmacy and Pharmacology, 61 (3). pp. 399-406. ISSN 0022-3573

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Aims to measure the metabolism and toxicity of 7-chloro-4-(cyclohexylmethyl)-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-1) and 4-cyclohexylmethyl-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-2), two new benzodiazepine analogues found to be effective against Leishmania amastigotes in vitro. The metabolism of BNZ-1 and -2 was investigated in isolated rat hepatocytes and rat liver microsomes. The toxicity of the compounds was assessed in a murine macrophage cell line by determining cell viability and reduced glutathione (GSH) content. The metabolism and toxicity of flurazepam was assessed for comparison. BNZ-1 and BNZ-2 underwent similar metabolic transformations by the liver systems, forming N-demethylated and hydroxylated metabolites, with subsequent O-glucuronidation. Flurazepam and both analogue compounds depleted macrophage GSH levels without affecting cell viability at the concentrations used (up to 100 microM), but only flurazepam inhibited glutathione reductase activity, indicating that it is acting by a different mechanism. The exact mechanism responsible for GSH depletion is unknown at present. Further experiments are needed to fully understand the effects of BNZs on the parasite GSH analogue, trypanothione, which may be a direct or indirect target for these agents. Pharmacokinetic evaluation of these compounds is required to further progress their development as potential new treatments for leishmaniasis.