Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages
Thi, M.D. and Grant, M.H. and Mullen, Alexander B. and Tettey, J.N.A. and Mackay, S.P. and Clark, Rachael L. (2009) Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages. Journal of Pharmacy and Pharmacology, 61 (3). pp. 399-406. ISSN 0022-3573 (https://doi.org/10.1211/jpp.61.03.0017)
Full text not available in this repository.Request a copyAbstract
Aims to measure the metabolism and toxicity of 7-chloro-4-(cyclohexylmethyl)-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-1) and 4-cyclohexylmethyl-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-2), two new benzodiazepine analogues found to be effective against Leishmania amastigotes in vitro. The metabolism of BNZ-1 and -2 was investigated in isolated rat hepatocytes and rat liver microsomes. The toxicity of the compounds was assessed in a murine macrophage cell line by determining cell viability and reduced glutathione (GSH) content. The metabolism and toxicity of flurazepam was assessed for comparison. BNZ-1 and BNZ-2 underwent similar metabolic transformations by the liver systems, forming N-demethylated and hydroxylated metabolites, with subsequent O-glucuronidation. Flurazepam and both analogue compounds depleted macrophage GSH levels without affecting cell viability at the concentrations used (up to 100 microM), but only flurazepam inhibited glutathione reductase activity, indicating that it is acting by a different mechanism. The exact mechanism responsible for GSH depletion is unknown at present. Further experiments are needed to fully understand the effects of BNZs on the parasite GSH analogue, trypanothione, which may be a direct or indirect target for these agents. Pharmacokinetic evaluation of these compounds is required to further progress their development as potential new treatments for leishmaniasis.
ORCID iDs
Thi, M.D., Grant, M.H. ORCID: https://orcid.org/0000-0002-7712-404X, Mullen, Alexander B. ORCID: https://orcid.org/0000-0001-7475-5543, Tettey, J.N.A., Mackay, S.P. ORCID: https://orcid.org/0000-0001-8000-6557 and Clark, Rachael L.;-
-
Item type: Article ID code: 18744 Dates: DateEventMarch 2009PublishedNotes: PMID: 19222915 Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Technology > Engineering (General). Civil engineering (General)Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Pharmaceutical Sciences
Faculty of Engineering > Bioengineering
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical SciencesDepositing user: Ms Ashley Urie Date deposited: 19 Apr 2010 12:02 Last modified: 11 Nov 2024 09:24 URI: https://strathprints.strath.ac.uk/id/eprint/18744