Picture of fish in sea

Open Access research that uses mathematical models to solve ecological problems...

Solving a variety of ecological and biological problems is the focus of marine population modelling research conducted within the Department of Mathematics & Statistics. Here research deploys mathematical models to better understanding issues relating to fish stock management, ecosystem dynamics, ocean currents, and the effects of multispecies interactions within diverse marine ecosystems.

Research work in marine population modelling interfaces with a number of other key research specialisms, including mathematical biology, epidemiology and statistical informatics, where investigations are improving human understanding of the behaviour of infectious diseases, particularly in relation to animal infections; but also the modelling of complex biological processes such as antibiotic prodcution in actinobacteria.

Explore some of the Open Access research from Mathematics & Statistics. Or explore all of Strathclyde's Open Access research...

Browse by Journal or other publication

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Publication Date | Item type | No Grouping
Jump to: 2008 | 2005
Number of items: 2.

2008

Fernandes, P. and Shankland, K. and David, W.I.F. and Markvardsen, A.J. and Florence, A.J. and Shankland, N. and Leech, C.K. (2008) A differential thermal expansion approach to crystal structure determination from powder diffraction data. Journal of Applied Crystallography, 41 (6). pp. 1089-1094. ISSN 0021-8898

2005

Florence, A.J. and Shankland, N. and Shankland, K. and David, W.I.F. and Pidcock, E. and Xu, X. and Johnston, A. and Kennedy, A.R. and Cox, P.J. and Evans, J.S.O. and Steele, G. and Cosgrove, S.D. and Frampton, C.S. (2005) Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: the state of the art and challenges. Journal of Applied Crystallography, 38 (2). pp. 249-259. ISSN 0021-8898

This list was generated on Sun Jul 5 23:06:41 2020 BST.