Picture of small jelly fish in ocean

Open Access research that better understands changing marine ecologies...

Strathprints makes available scholarly Open Access content by researchers in the Department of Mathematics & Statistics.

Mathematics & Statistics hosts the Marine Population Modelling group which is engaged in research into topics surrounding marine resource modelling and ecology. Recent work has included important developments in the population modelling of marine species.

Explore the Open Access research of Mathematics & Statistics. Or explore all of Strathclyde's Open Access research...

Browse by Author or creator

Group by: Publication Date | Item type | No Grouping
Jump to: Article
Number of items: 9.

Article

Sureshbabu, A and Okajima, H and Yamanaka, D and Tonner, E and Shastri, S and Maycock, J and Szymanowska, M and Shand, J and Takahashi, S-I and Beattie, J and Allan, G J and Flint, David (2012) IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. Journal of Cell Science, 125 (7). pp. 1693-1705.

Sureshbabu, Angara and Okajima, Hiroshi and Yamanaka, Daisuke and Shastri, Surya and Tonner, Elizabeth and Rae, Colin and Szymanowska, M. and Shand, J.H. and Takahashi, Shin-Ichiro and Beattie, J. and Allan, G.J. and Flint, D.J. (2009) IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic response. Biochemical Society Transactions, 37. pp. 882-885. ISSN 0300-5127

Allan, G.J. and Beattie, J. and Shand, J.H. and Szymanowska, M. and Flint, D.J. (2008) Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Molecular and Cellular Biochemistry, 307 (1-2). pp. 221-236. ISSN 0300-8177

Sorrell, A.M. and Shand, J.H. and Tonner, E. and Gamberoni, M. and Accorsi, P.A. and Beattie, J. and Allan, G.J. and Flint, D.J. (2006) Insulin-like growth factor-binding protein-5 activates plasminogen by interaction with tissue plasminogen activator, independently of its ability to bind to plasminogen activator inhibitor-1, insulin-like growth factor-I, or heparin. Journal of Biological Chemistry, 281 (16). pp. 10883-10889. ISSN 1083-351X

Allan, G.J. and Tonner, E. and Szymanowska, M. and Shand, J. and Kelly, S.M. and Phillips, K. and Clegg, R.A. and Gow, I.F. and Beattie, J. and Flint, D.J. (2005) Cumulative mutagenesis of the basic residues in the 201-218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action. Endocrinology, 147 (1). pp. 338-349. ISSN 0013-7227

Beattie, J. and Phillips, K. and Shand, J. and Szymanowska, M. and Flint, D.J. and Allan, G.J. (2005) Molecular recognition characteristics in the insulin-like growth factor (IGF)-insulin-like growth factor binding protein-3/5 (IGFBP-3/5) heparin axis. Journal of Molecular Endocrinology, 34. pp. 163-175. ISSN 0952-5041

Boutinaud, M. and Shand, J.H. and Beattie, J. and Park, M. and Allan, G.J. and Phillips, K. and Flint, D.J. (2004) A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. Journal of Molecular Endocrinology, 33 (1). pp. 195-207. ISSN 0952-5041

Shand, J.H. and Beattie, J. and Flint, D.J. and Song, H. and Allan, G.J. and Phillips, K. and Kelly, S.M. (2003) Specific amino acid substitutions determine the differential contribution of the N- and C-terminal domains of insulin-like growth factor (IGF)-binding protein-5 in binding IGF-I. Journal of Biological Chemistry, 278 (20). pp. 17859-17866. ISSN 1083-351X

Allan, G.J. and Tonner, E. and Barber, M.C. and Travers, M. and Shand, J. and Vernon, R.G. and Kelly, P.A. and Binart, N. and Flint, D.J. (2002) Growth hormone, acting in part through the insulin-like growth factor axis, rescues developmental but not metabolic activity in the mammary gland of mice expressing a single allele of the prolactin receptor. Endocrinology, 143 (11). pp. 4310-4319. ISSN 0013-7227

This list was generated on Tue Jan 21 04:06:35 2025 GMT.