Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study

Allan, G.J. and Beattie, J. and Shand, J.H. and Szymanowska, M. and Flint, D.J. (2008) Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Molecular and Cellular Biochemistry, 307 (1-2). pp. 221-236. ISSN 0300-8177

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

This review describes a comprehensive analysis of a surface plasmon resonance (SPR)-based biosensor study of molecular interactions in the insulin-like growth factor (IGF) molecular axis. In this study, we focus on the interaction between the polypeptide growth factors IGF-I and IGF-II with six soluble IGF binding proteins (IGFBP 1-6), which occur naturally in various biological fluids. We have describe the conditions required for the accurate determination of kinetic rate constants for these interactions and highlight the experimental and theoretical pitfalls, which may be encountered in the early stages of such a study. We focus on IGFBP-5 and describe a site-directed mutagenesis study, which examines the contribution of various residues in the protein to high affinity interaction with IGF-I and -II. We analyse the interaction of IGFBP-5 (and IGFBP-3) with heparin and other biomolecules and describe experiments, which were designed to monitor multi-protein complex formation in this molecular axis.