Hierarchical gradient-based iterative parameter estimation algorithms for a nonlinear feedback system based on the hierarchical identification principle

Yang, Dan and Liu, Yanjun and Ding, Feng and Yang, Erfu (2024) Hierarchical gradient-based iterative parameter estimation algorithms for a nonlinear feedback system based on the hierarchical identification principle. Circuits, Systems, and Signal Processing, 43 (1). pp. 124-151. ISSN 0278-081X (https://doi.org/10.1007/s00034-023-02477-1)

[thumbnail of Yang_et_al_Hierarchical_gradient-based_iterative_parameter_estimation_algorithms]
Preview
Text. Filename: Yang_et_al_Hierarchical_gradient-based_iterative_parameter_estimation_algorithms.pdf
Accepted Author Manuscript
License: Strathprints license 1.0

Download (285kB)| Preview

Abstract

This paper focuses on iterative parameter estimation methods for a nonlinear closed-loop system (i.e., a nonlinear feedback system) with an equation-error model for the open-loop part. By applying negative gradient search, a gradient-based iterative algorithm is constructed. To reduce the computational costs and improve the parameter estimation accuracy, the hierarchical identification principle is employed to derive a hierarchical gradient-based iterative algorithm. A simulation example is provided to test the effectiveness of the proposed algorithms.

ORCID iDs

Yang, Dan, Liu, Yanjun, Ding, Feng and Yang, Erfu ORCID logoORCID: https://orcid.org/0000-0003-1813-5950;