Delay-dependent asymptotic stability of highly nonlinear stochastic differential delay equations driven by G-Brownian motion
Fei, Chen and Fei, Weiyin and Mao, Xuerong and Yan, Litan (2022) Delay-dependent asymptotic stability of highly nonlinear stochastic differential delay equations driven by G-Brownian motion. Journal of the Franklin Institute, 359 (9). pp. 4366-4392. ISSN 0016-0032 (https://doi.org/10.1016/j.jfranklin.2022.03.027)
Preview |
Text.
Filename: Fei_etal_JFI_2022_Delay_dependent_asymptotic_stability_of_highly_nonlinear_stochastic_differential_delay_equations_driven_by_G_Brownian.pdf
Accepted Author Manuscript License: Download (876kB)| Preview |
Abstract
Based on the classical probability, the stability of stochastic differential delay equations (SDDEs) whose coefficientsare growing at most linearly has been investigated intensively. Moreover, the delay-dependent stability of highlynonlinear hybrid stochastic differential equations (SDEs) has also been studied recently. In this paper, using thenonlinear expectation theory, we first explore the delay-dependent criteria on the asymptotic stability for a class ofhighly nonlinear SDDEs driven by G-Brownian motion (G-SDDEs). Then, the (weak) quasi-sure stability of solutionsto G-SDDEs is developed. Finally, an example is analyzed by the φ-max-mean algorithm to illustrate our theoreticalresults.
ORCID iDs
Fei, Chen, Fei, Weiyin, Mao, Xuerong ORCID: https://orcid.org/0000-0002-6768-9864 and Yan, Litan;-
-
Item type: Article ID code: 80075 Dates: DateEvent30 June 2022Published2 April 2022Published Online24 March 2022AcceptedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 04 Apr 2022 13:31 Last modified: 19 Dec 2024 01:29 URI: https://strathprints.strath.ac.uk/id/eprint/80075