Reconciled estimates of monthly GDP in the United States

Koop, Gary and McIntyre, Stuart and Mitchell, James and Poon, Aubrey (2023) Reconciled estimates of monthly GDP in the United States. Journal of Business and Economic Statistics, 41 (2). pp. 563-577. ISSN 0735-0015 (https://doi.org/10.1080/07350015.2022.2044336)

[thumbnail of Koop-etal-JBES-2022-Reconciled-estimates-of-monthly-GDP-in-the-US]
Preview
Text. Filename: Koop_etal_JBES_2022_Reconciled_estimates_of_monthly_GDP_in_the_US.pdf
Accepted Author Manuscript
License: Strathprints license 1.0

Download (662kB)| Preview

Abstract

In the United States, income and expenditure-side estimates of gross domestic product (GDP) (GDP (Formula presented.) and GDP (Formula presented.)) measure "true" GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDP (Formula presented.), GDP (Formula presented.), unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error perspective (i.e., the two GDP proxies are assumed to equal true GDP plus measurement error). Without further restrictions, our model is unidentified. We consider a range of restrictions that allow for point and set identification of true GDP and show that they lead to informative monthly GDP estimates. We illustrate how these new monthly data contribute to our historical understanding of business cycles and we provide a real-time application nowcasting monthly GDP over the pandemic recession.

ORCID iDs

Koop, Gary ORCID logoORCID: https://orcid.org/0000-0002-6091-378X, McIntyre, Stuart ORCID logoORCID: https://orcid.org/0000-0002-0640-7544, Mitchell, James and Poon, Aubrey ORCID logoORCID: https://orcid.org/0000-0003-2587-8779;