Research on the hull form optimization using the surrogate models

Zhang, Shenglong and Tezdogan, Tahsin and Zhang, Baoji and Li, Ling (2021) Research on the hull form optimization using the surrogate models. Engineering Applications of Computational Fluid Mechanics, 15 (1). pp. 747-761. ISSN 1994-2060 (https://doi.org/10.1080/19942060.2021.1915875)

[thumbnail of Zhang_etal_EACFM_2021_Research_on_the_hull_form_optimisation_using_the_surrogate_models]
Preview
Text. Filename: Zhang_etal_EACFM_2021_Research_on_the_hull_form_optimisation_using_the_surrogate_models.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (8MB)| Preview

Abstract

The ship hull form optimization using the Computational Fluid Dynamics (CFD) method is increasingly employed in the early design of a ship, as an optimal ship hull form can obtain good hydrodynamics. However, it is time-consuming due to its many CFD simulations for the optimization. This paper presents a ship hull form optimization loop using the surrogate model, deep belief network (DBN), to reduce the wave-making resistance of the Wigley ship. The prediction performance of the wave-making resistance of the Wigley ship using the DBN method is discussed and compared with the traditional surrogate models found in this study. The results show that the resistance obtained using the deep belief network algorithm is superior to that obtained using the typical surrogate models. Then, a ship hull form optimization framework is built by integrating the Free From Deformation, non-linear programming by quadratic Lagrangian and deep belief network algorithms. The optimization results show that the deep belief network-based ship hull form optimization loop can be used to optimize the Wigley ship. The study presented in this paper could provide a deep learning algorithm for the ship design optimization.