Classification using radial basis function networks with uncertain weights
Manson, G. and Pierce, S.G. and Worden, K. (2005) Classification using radial basis function networks with uncertain weights. Key Engineering Materials, 293-294. pp. 135-142. ISSN 1013-9826 (http://dx.doi.org/10.4028/0-87849-976-8.135)
Full text not available in this repository.Request a copyAbstract
This paper considers the performance of radial basis function neural networks for the purpose of data classification. The methods are illustrated using a simple two class problem. Two techniques for reducing the rate of misclassifications, via the introduction of an "unable to classify" label, are presented. The first of these considers the imposition of a threshold value on the classifier outputs whilst the second considers the replacement of the crisp network weights with interval ranges. Two network training techniques are investigated and it is found that, although thresholding and uncertain weights give similar results, the level of variability of network performance is dependent upon the training approach.
ORCID iDs
Manson, G., Pierce, S.G. ORCID: https://orcid.org/0000-0003-0312-8766 and Worden, K.;-
-
Item type: Article ID code: 7159 Dates: DateEvent2005PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Strathprints Administrator Date deposited: 14 Oct 2008 Last modified: 11 Nov 2024 08:45 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/7159