A new algorithm of SAR image target recognition based on improved deep convolutional neural network

Gao, Fei and Huang, Teng and Sun, Jinping and Wang, Jun and Hussain, Amir and Yang, Erfu (2018) A new algorithm of SAR image target recognition based on improved deep convolutional neural network. Cognitive Computation. ISSN 1866-9964 (https://doi.org/10.1007/s12559-018-9563-z)

[thumbnail of Gao-etal-CC-2018-A-new-algorithm-of-SAR-image-target-recognition-based-on-improved]
Preview
Text. Filename: Gao_etal_CC_2018_A_new_algorithm_of_SAR_image_target_recognition_based_on_improved.pdf
Accepted Author Manuscript

Download (2MB)| Preview

Abstract

Background: To effectively make use of deep learning technology automatic feature extraction ability, and enhance the ability of depth learning method to learn and recognize features, this paper proposed a deep learning algorithm combining Deep Convolutional Neural Network (DCNN) trained with an improved cost function and Support Vector Machine (SVM). Methods: The class separation information, which explicitly facilitates intra-class compactness and interclass separability in the process of learning features, is added to an improved cost function as a regularization term to enhance the feature extraction ability of DCNN. Then the improved DCNN is applied to learn the features of SAR images. Finally, SVM is utilized to map the features into output labels. Results: Experiments are performed on SAR image data in Moving and Stationary Target Acquisition and Recognition (MSTAR) database. The experiment results prove the effectiveness of our method, achieving an average accuracy of 99% on ten types of targets, some variants, and some articulated targets. Conclusion: It proves that our method is effective and CNN enjoys a certain potential to be applied in SAR image target recognition.

ORCID iDs

Gao, Fei, Huang, Teng, Sun, Jinping, Wang, Jun, Hussain, Amir and Yang, Erfu ORCID logoORCID: https://orcid.org/0000-0003-1813-5950;