Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions

Del Sorbo, D and Blackman, D R and Capdessus, R and Small, K and Slade-Lowther, C and Lou, W and Duff, M J and Robinson, A P L and McKenna, P and Sheng, Z-M and Pasley, J and Ridgers, C P (2018) Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions. New Journal of Physics, 20. 033014. ISSN 1367-2630 (https://doi.org/10.1088/1367-2630/aaae61)

[thumbnail of Del-Sorbo-etal-NJP2018-Efficient-ion-acceleration-and-dense-electron-positron-plasma]
Preview
Text. Filename: Del_Sorbo_etal_NJP2018_Efficient_ion_acceleration_and_dense_electron_positron_plasma.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (620kB)| Preview

Abstract

The radiation pressure of next generation ultra-high intensity ( > 1023 W/cm2 ) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an ex- tremely dense (∼1024 cm−3) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and laser to ion conversion efficiency by up to 30-50% & 50-65%, respectively. Thus we identify the regimes of laser-matter interaction, where either ions are efficiently accelerated to high energy or dense pair-plasmas are produced as a guide for future experiments.

ORCID iDs

Del Sorbo, D, Blackman, D R, Capdessus, R ORCID logoORCID: https://orcid.org/0000-0002-3403-6023, Small, K, Slade-Lowther, C, Lou, W, Duff, M J ORCID logoORCID: https://orcid.org/0000-0002-0745-0157, Robinson, A P L, McKenna, P ORCID logoORCID: https://orcid.org/0000-0001-8061-7091, Sheng, Z-M ORCID logoORCID: https://orcid.org/0000-0002-8823-9993, Pasley, J and Ridgers, C P;