Improved analysis of GW150914 using a fully spin-precessing waveform model
Abbott, B. P. and Jawahar, S. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration, Virgo Collaboration (2016) Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X, 6 (4). 041014. ISSN 2160-3308 (https://doi.org/10.1103/PhysRevX.6.041014)
Preview |
Text.
Filename: Abbott_etal_PRX_2016_Improved_analysis_of_GW150914_using_a_fully_spin_precessing_waveform_model.pdf
Final Published Version License: Download (1MB)| Preview |
Abstract
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116 , 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116 , 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116 , 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116 , 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
ORCID iDs
Abbott, B. P., Jawahar, S. ORCID: https://orcid.org/0000-0002-4945-691X, Lockerbie, N. A. ORCID: https://orcid.org/0000-0002-1678-3260 and Tokmakov, K. V. ORCID: https://orcid.org/0000-0002-2808-6593;-
-
Item type: Article ID code: 62451 Dates: DateEvent21 October 2016Published24 June 2016AcceptedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 28 Nov 2017 12:05 Last modified: 04 Jan 2025 14:01 URI: https://strathprints.strath.ac.uk/id/eprint/62451