Operational loads on a tidal turbine due to environmental conditions
Mullings, Hannah R. and Stallard, Tim J. and Payne, Grégory; (2017) Operational loads on a tidal turbine due to environmental conditions. In: Proceedings of The Twenty-seventh International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Cupertino, California, pp. 222-229. ISBN 978-1-880653-97-5
Preview |
Text.
Filename: Mullings_etal_ISOPE_2017_Operational_loads_on_a_tidal_turbine_due_to_environmental.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Accurate assessment of the fatigue life of tidal stream turbines and components requires prediction of the unsteady loading of turbine components over a wide range of frequencies. This study focuses on the influence of ambient turbulence, velocity shear and the approach taken to model wave kinematics, on the variation of thrust load imposed on the rotor shaft and supporting tower. Load cycles are assessed based on sea-state occurrence data taken over a five month period for a case study site. The influence of each environmental parameter on component loading is evaluated and the impact on material design parameters assessed. Alternative approaches are considered for modelling turbulent loading and wave loading. The frequency variation of loads due to turbulence are scaled from experimental data from trials of a three-bladed horizontal axis turbine of 1.2 m diameter on a bed-mounted supporting structure. Frequency dependent wave loading is estimated by a relative form of the drag term of the widely used equation of Morison et al. (1950), with the depth decay of kinematics modelled by linear wave theory. Over the five month interval considered a ten year design life can be obtained with a lower design load by accounting for variation of turbulence intensity that occurs during each tidal cycle. This is expected to vary further with the approach taken to model the onset turbulence. A component can also be designed for lower loads over the same time period if irregular waves are modelled instead of regular.
-
-
Item type: Book Section ID code: 62057 Dates: DateEvent25 June 2017Published24 March 2017AcceptedSubjects: Naval Science > Naval architecture. Shipbuilding. Marine engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 16 Oct 2017 14:14 Last modified: 11 Nov 2024 15:11 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/62057