Nondestructive handheld fourier transform infrared (FT-IR) analysis of spectroscopic changes and multivariate modelling of thermally degraded plain Portland cement concrete and its slag and fly ash based analogues
Tang, Pik Leung and Algassim, Mohammad and Nic Daéid, Niamh and Berlouis, Leonard and Seelenbinder, John (2016) Nondestructive handheld fourier transform infrared (FT-IR) analysis of spectroscopic changes and multivariate modelling of thermally degraded plain Portland cement concrete and its slag and fly ash based analogues. Applied Spectroscopy, 70 (5). pp. 923-931. ISSN 0003-7028 (https://doi.org/10.1177/0003702816638306)
Preview |
Text.
Filename: Tang_etal_AS_2016_spectroscopic_changes_and_multivariate_modelling_of_thermally_degraded_plain_Portland.pdf
Accepted Author Manuscript Download (2MB)| Preview |
Abstract
Concrete is by far the world’s most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a non-destructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modelled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.
ORCID iDs
Tang, Pik Leung, Algassim, Mohammad, Nic Daéid, Niamh, Berlouis, Leonard ORCID: https://orcid.org/0000-0002-7217-1680 and Seelenbinder, John;-
-
Item type: Article ID code: 57303 Dates: DateEvent31 May 2016Published8 April 2016Published Online22 January 2016AcceptedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Pure Administrator Date deposited: 05 Aug 2016 13:51 Last modified: 20 Jan 2025 01:58 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/57303