Using molecular networking for microbial secondary metabolite bioprospecting
Purves, Kevin and Macintyre, Lynsey and Brennan, Debra and Hreggviðsson, Guðmundur Ó. and Kuttner, Eva and Ásgeirsdóttir, Margrét E. and Young, Louise C. and Green, David H. and Edrada-Ebel, Ruangelie and Duncan, Katherine (2016) Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites, 6 (1). 2. ISSN 2218-1989 (https://doi.org/10.3390/metabo6010002)
Preview |
Text.
Filename: Purves_etal_Metabolites_2016_Using_molecular_networking_for_microbial_secondary.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.
ORCID iDs
Purves, Kevin, Macintyre, Lynsey, Brennan, Debra, Hreggviðsson, Guðmundur Ó., Kuttner, Eva, Ásgeirsdóttir, Margrét E., Young, Louise C., Green, David H., Edrada-Ebel, Ruangelie and Duncan, Katherine ORCID: https://orcid.org/0000-0002-3670-4849;-
-
Item type: Article ID code: 55697 Dates: DateEvent8 January 2016Published30 December 2015AcceptedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 25 Feb 2016 15:19 Last modified: 05 Dec 2024 01:12 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/55697