Alkali-metal-mediated zincation (AMMZn) meets N-heterocyclic carbene (NHC) chemistry : Zn–H exchange reactions and structural authentication of a dinuclear Au(I) complex with a NHC anion
Armstrong, David and Baillie, Sharon and Blair, Victoria and Chabloz, Nicholas and Diez, Josefina and Garcia Alvarez, Joaquin and Kennedy, Alan and Robertson, Stuart and Hevia, Eva (2013) Alkali-metal-mediated zincation (AMMZn) meets N-heterocyclic carbene (NHC) chemistry : Zn–H exchange reactions and structural authentication of a dinuclear Au(I) complex with a NHC anion. Chemical Science, 4 (11). pp. 4259-4266. ISSN 2041-6539 (https://doi.org/10.1039/C3SC52101J)
PDF.
Filename: 52._Chem._Sci._2013_4_4259_4266.pdf
Final Published Version Download (388kB) |
Abstract
Merging two evolving areas in synthesis, namely cooperative bimetallics and N-heterocyclic carbenes (NHCs), this study reports the isolation of the first intermediates of alkali-metal-mediated zincation (AMMZn) of a free NHC and a Zn–NHC complex using sodium zincate [(TMEDA)NaZn(TMP)(tBu)2] (1) as a metallating reagent. The structural authentication of (THF)3Na[:C{[N(2,6-iPr2C6H3)]2CHCZn(tBu2)}] (2) and [Na(THF)6]+[tBu2Zn:C{[N(2,6-iPr2C6H3)]2CHCZn(tBu2)}]− (4), resulting from the reactions of 1 with unsaturated free NHC IPr (IPr = 1,3-bis(2,6-di-isopropylphenylimidazole-2-ylidene) and NHC complex ZntBu2IPr (3) respectively demonstrates that in both cases, this mixed-metal approach can easily facilitate the selective C4 zincation of the unsaturated backbone of the NHC ligand. Furthermore, the generation of anionic NHC fragments enables dual coordination through their normal (C2) and abnormal (C4) positions to the bimetallic system, stabilising the kinetic AMMZn intermediates which normally go undetected and provides new mechanistic insights in to how these mixed-metal reagents operate. In stark contrast to this bimetallic approach when NHC-complex 3 is reacted with a more conventional single-metal base such as tBuLi, the deprotonation of the coordinated carbene is inhibited, favouring instead, co-complexation to give NHC-stabilised [IPr·LiZntBu3] (5). Showing the potential of 2 to act as a transfer agent of its anionic NHC unit to transition metal complexes, this intermediate reacts with two molar equivalents of [ClAu(PPh3)] to afford the novel digold species [ClAu:C{[N(2,6-iPr2C6H3)]2CHCAu(PPh3)}] (6) resulting from an unprecedented double transmetallation reaction which involves the simultaneous exchange of both cationic (Na+) and neutral (ZntBu2) entities on the NHC framework.
ORCID iDs
Armstrong, David, Baillie, Sharon, Blair, Victoria, Chabloz, Nicholas, Diez, Josefina, Garcia Alvarez, Joaquin, Kennedy, Alan ORCID: https://orcid.org/0000-0003-3652-6015, Robertson, Stuart ORCID: https://orcid.org/0000-0002-9330-8770 and Hevia, Eva ORCID: https://orcid.org/0000-0002-3998-7506;-
-
Item type: Article ID code: 45124 Dates: DateEvent2013Published14 August 2013Published OnlineSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Pure Administrator Date deposited: 11 Oct 2013 15:57 Last modified: 11 Nov 2024 10:30 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/45124