Close encounters of the 3D kind – exploiting high dimensionality in molecular semiconductors

Skabara, Peter J. and Arlin, Jean-Baptiste and Geerts, Yves H. (2013) Close encounters of the 3D kind – exploiting high dimensionality in molecular semiconductors. Advanced Materials, 25 (13). pp. 1948-1954. ISSN 0935-9648 (https://doi.org/10.1002/adma.201200862)

Full text not available in this repository.Request a copy

Abstract

In this Research News article we discuss the significance of dimensionality on the charge-transport properties of organic semiconductors. Dimensionality is defined in two ways: as a function of (i) the -conjugated framework within the molecular structure, and (ii) the degree and direction of intermolecular close-contacts between molecules in the bulk. In terms of dimensionality, silicon is a good role model for organic semiconductors, since it demonstrates 3D architecture in the bulk through covalent bonding. Achieving this for organics is challenging and requires not only a 3D molecular structure, but also a network of intermolecular short contacts in three dimensions. This review identifies the limitations of low dimensional materials and summarizes the challenges faced in progressing towards fully 3D organic semiconductors.