Equal channel angular pressing with converging billets - FE simulation
Rosochowski, Andrzej and Olejnik, Lech (2011) Equal channel angular pressing with converging billets - FE simulation. In: 10th International Conference on Technology of Plasticity, ICTP 2011, 2011-09-25 - 2011-09-30.
Full text not available in this repository.Request a copyAbstract
A new concept of equal channel angular pressing (ECAP) with converging billets is proposed and analysed using finite element (FE) simulation. In its basic configuration, the new ECAP process uses two equal square input channels converging into a single output channel, which is twice as wide as the input channels so that it can accept two converging billets. The contact surface between converging billets plays the same role as a movable die wall in the output channel of classical ECAP and thus reduces friction and the process force. The process productivity is doubled and material pickup, especially problematic in the output channel, avoided. The results of FE analysis enable comparison between classical ECAP and the new process. It has been found that strain distribution is similar in both processes while force in ECAP with converging billets can be reduced by 20% (assuming friction coefficient of 0.1). An additional simulation has been carried out for the new process with the added back pressure, which makes strain distribution more uniform. Finely, a systematic approach to designing different ECAP configurations, which involve multiple billets in the input and output channels and realise ECAP routes A and B has been pro-posed.
ORCID iDs
Rosochowski, Andrzej ORCID: https://orcid.org/0000-0001-7896-8167 and Olejnik, Lech;-
-
Item type: Conference or Workshop Item(Paper) ID code: 34100 Dates: DateEvent2011PublishedSubjects: Technology > Engineering (General). Civil engineering (General) > Engineering design Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 10 Oct 2011 15:48 Last modified: 11 Nov 2024 16:31 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/34100