Full model for reversible kinetics of lipase-catalyzed sugar- ester synthesis in 2-methyl 2-butanol
Flores, M.V. and Halling, P.J. (2002) Full model for reversible kinetics of lipase-catalyzed sugar- ester synthesis in 2-methyl 2-butanol. Biotechnology and Bioengineering, 78 (7). pp. 794-800. ISSN 0006-3592 (http://dx.doi.org/10.1002/bit.10260)
Full text not available in this repository.Request a copyAbstract
A kinetic model derived from the ping-pong bi-bi reversible mechanism is proposed to described the acylation of glucose by lauric acid in 2-methyl 2-butanol mediated by Candida antarctica lipase at 60degreesC. The model accounts for the effect of all four compounds in the reaction mixture, namely lauric acid, glucose, water, and lauroyl glucose ester. A supersaturated glucose solution was used to avoid limitations by glucose dissolution rate. Experiments with varied initial water content were performed to determine the effect of water on the initial reaction rate. The full time course of ester formation is described by five parameters: (a) three parameters evaluated from initial rate measurements; (b) the equilibrium constant, independently evaluated; and (c) one extra parameter fitted to the progress curve of ester formation. This reduced form of a full reversible kinetic model based on the ping-pong bi-bi mechanism is able to describe the complete course of lauroyl glucose ester synthesis. The proposed model provides a good fit for the experimental results.
ORCID iDs
Flores, M.V. and Halling, P.J. ORCID: https://orcid.org/0000-0001-5077-4088;-
-
Item type: Article ID code: 260 Dates: DateEvent30 June 2002PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Users 16 not found. Date deposited: 14 Mar 2006 Last modified: 01 Jan 2025 10:06 URI: https://strathprints.strath.ac.uk/id/eprint/260