Cysteine biosynthesis in trichomonas vaginalis involves cysteine synthase utilizing o-phosphoserine
Westrop, G.D. and Goodall, Gordon and Mottram, Jeremy C. and Coombs, G.H. (2006) Cysteine biosynthesis in trichomonas vaginalis involves cysteine synthase utilizing o-phosphoserine. Journal of Biological Chemistry, 281 (35). pp. 25062-25075. ISSN 1083-351X (http://dx.doi.org/10.1074/jbc.M600688200)
Full text not available in this repository.Request a copyAbstract
Trichomonas vaginalis is an early divergent eukaryote with many unusual biochemical features. It is an anaerobic protozoan parasite of humans that is thought to rely heavily on cysteine as a major redox buffer, because it lacks glutathione. We report here that for synthesis of cysteine from sulfide, T. vaginalis relies upon cysteine synthase. The enzyme (TvCS1) can use either O-acetylserine or O-phosphoserine as substrates. The Km values of the enzyme for sulfide are very low (0.02 mm), suggesting that the enzyme may be a means of ensuring that sulfide in the parasite is maintained at a low level. T. vaginalis appears to lack serine acetyltransferase, the source of O-acetylserine in many cells, but has a functional 3-phosphoglycerate dehydrogenase and an O-phosphoserine aminotransferase that together result in the production of O-phosphoserine, suggesting that this is the physiological substrate. TvCS1 can also use thiosulfate as substrate. Overall, TvCS1 has substrate specificities similar to those reported for cysteine synthases of Aeropyrum pernix and Escherichia coli, and this is reflected by sequence similarities around the active site. We suggest that these enzymes are classified together as type B cysteine synthases, and we hypothesize that the use of O-phosphoserine is a common characteristic of these cysteine synthases. The level of cysteine synthase in T. vaginalis is regulated according to need, such that parasites growing in an environment rich in cysteine have low activity, whereas exposure to propargylglycine results in elevated cysteine synthase activity. Humans lack cysteine synthase; therefore, this parasite enzyme could be an exploitable drug target.
ORCID iDs
Westrop, G.D. ORCID: https://orcid.org/0000-0002-8011-6219, Goodall, Gordon, Mottram, Jeremy C. and Coombs, G.H.;-
-
Item type: Article ID code: 10507 Dates: DateEvent1 September 2006PublishedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Strathprints Administrator Date deposited: 29 Nov 2011 11:11 Last modified: 11 Nov 2024 08:59 URI: https://strathprints.strath.ac.uk/id/eprint/10507