Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Laser surface modification of Ti alloys

Baker, T.N. (2010) Laser surface modification of Ti alloys. In: Surface Engineering of Light Alloys - Aluminium, Magnesium and Titanium Alloys. Woodhead Publications, Cambridge, UK, pp. 398-443. ISBN 1845695372

[img]
Preview
Text (strathprints008071)
strathprints008071.pdf
Accepted Author Manuscript

Download (4MB) | Preview

Abstract

The laser surface engineering of titanium alloys has been developed over the past 30 years to produce a modified layer up to 1mm depth, thicker than alternative techniques. CW C02 lasers have been the main lasers used for both surface cladding and alloying. Much of the early work was based on laser nitriding forming titanium nitrides throughout the molten pool. Subsequent alloying developments have included the incorporation of carbides, nitrides, oxides and silicides, and also intermetallics and rare earths, added as powders. Laser processing can now tailor surfaces with superior tribological and erosion resistant properties compared to the untreated titanium alloys.