Mitochondria regulate TRPV4 mediated release of ATP
Zhang, Xun and Lee, Matthew D. and Buckley, Charlotte and Wilson, Calum and McCarron, John G. (2022) Mitochondria regulate TRPV4 mediated release of ATP. British Journal of Pharmacology, 179 (5). pp. 1017-1032. ISSN 1476-5381 (https://doi.org/10.1111/bph.15687)
Preview |
Text.
Filename: Zhang_BJP_2021_Mitochondria_regulate_TRPV4_mediated.pdf
Final Published Version License: Download (4MB)| Preview |
Abstract
Background and Purpose: Ca2+ influx via TRPV4 channels triggers Ca2+ release from the IP3‐sensitive internal store to generate repetitive oscillations. Although mitochondria are acknowledged regulators of IP3‐mediated Ca2+ release, how TRPV4‐mediated Ca2+ signals are regulated by mitochondria is unknown. We show that depolarised mitochondria switch TRPV4 signalling from relying on Ca2+‐induced Ca2+ release at IP3 receptors to being independent of Ca2+ influx and instead mediated by ATP release via pannexins. Experimental Approach: TRPV4‐evoked Ca2+ signals were individually examined in hundreds of cells in the endothelium of rat mesenteric resistance arteries using the indicator Cal520. Key Results: TRPV4 activation with GSK1016790A (GSK) generated repetitive Ca2+ oscillations that required Ca2+ influx. However, when the mitochondrial membrane potential was depolarised, by the uncoupler CCCP or complex I inhibitor rotenone, TRPV4 activation generated large propagating, multicellular, Ca2+ waves in the absence of external Ca2+. The ATP synthase inhibitor oligomycin did not potentiate TRPV4‐mediated Ca2+ signals. GSK‐evoked Ca2+ waves, when mitochondria were depolarised, were blocked by the TRPV4 channel blocker HC067047, the SERCA inhibitor cyclopiazonic acid, the PLC blocker U73122 and the inositol trisphosphate receptor blocker caffeine. The Ca2+ waves were also inhibited by the extracellular ATP blockers suramin and apyrase and the pannexin blocker probenecid. Conclusion and Implications: These results highlight a previously unknown role of mitochondria in shaping TRPV4‐mediated Ca2+ signalling by facilitating ATP release. When mitochondria are depolarised, TRPV4‐mediated release of ATP via pannexin channels activates plasma membrane purinergic receptors to trigger IP3‐evoked Ca2+ release.
ORCID iDs
Zhang, Xun ORCID: https://orcid.org/0000-0003-0790-4291, Lee, Matthew D. ORCID: https://orcid.org/0000-0001-8265-382X, Buckley, Charlotte ORCID: https://orcid.org/0000-0002-7961-4544, Wilson, Calum ORCID: https://orcid.org/0000-0003-2500-0632 and McCarron, John G. ORCID: https://orcid.org/0000-0002-3302-3984;-
-
Item type: Article ID code: 78490 Dates: DateEvent31 March 2022Published4 October 2021Published Online2 September 2021AcceptedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 10 Nov 2021 14:32 Last modified: 16 Nov 2024 01:20 URI: https://strathprints.strath.ac.uk/id/eprint/78490