Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows

Tang, G.H. and Zhang, Y. H. and Gu, X.J. and Emerson, D. R. (2008) Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows. EPL: A Letters Journal Exploring the Frontiers of Physics, 83 (4). ISSN 0295-5075

Text (strathprints006969)
Accepted Author Manuscript

Download (513kB) | Preview


Due to its intrinsically kinetic nature, lattice Boltzmann (LB) approach to simulating non-equilibrium gas flows has recently attracted significant research interest. Compared with other kinetic methods, it can offer a significantly smaller computational cost. To capture the nonlinear high-order rarefaction phenomena in gas flows, a geometry-dependent gas local mean free path has been proposed to be implemented in our "high-order" LB model. A series of tests on rarefaction effects and the Knudsen layer interference have been carried out and the simulation results demonstrate our LB model's capability for highly non-equilibrium flows.