Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction

Gorman, D.G. and Trendafilova, I. and Mulholland, A.J. and Horáček, J. (2007) Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction. Journal of Sound and Vibration, 308 (1-2). pp. 231-245. ISSN 0022-460X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

When carrying out vibration health monitoring (VHM) of a structure it is usually assumed that the structure is in the absence of fluid interaction and/or that any environmental effects which can cause changes in the vibration response of the structure either remain constant or are negligible. In general, the natural frequencies of a structure are the first candidates to be considered for damage features. But the natural frequencies would also change as a result of the interaction of the structure with a fluid/gas environment. For the purpose of VHM, one needs the pure structural natural frequencies corresponding to conditions when the structure does not interact with the environment. Therefore, in certain cases when the above assumptions cannot be made it becomes necessary to extract values of natural frequencies of the structure if it were in the absence of fluid interaction from those values measured. This paper considers the case of a cantilever beam in contact with a fluid cavity giving rise to strong structural/fluid vibration interaction and develops a method by which the natural frequencies of the beam in the absence of fluid interaction can be obtained from those of the beam in interaction.