Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Spatially-structured cell populations process multiple sensory signals in parallel in intact vascular endothelium : stimulus-specific sensory cells in the intact vascular endothelium

Lee, Matthew D. and Wilson, Calum and Saunter, Christopher D. and Kennedy, Charles and Girkin, John M. and McCarron, John G. (2018) Spatially-structured cell populations process multiple sensory signals in parallel in intact vascular endothelium : stimulus-specific sensory cells in the intact vascular endothelium. Science Signaling. ISSN 1945-0877

[img] Text (Lee-etal-SS-2018-Spatially-structured-cell-populations-process-multiple-sensory-signals)
Lee_etal_SS_2018_Spatially_structured_cell_populations_process_multiple_sensory_signals.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 6 May 2019.

Download (8MB) | Request a copy from the Strathclyde author

Abstract

Blood flow, blood clotting, angiogenesis, vascular permeability and vascular remodeling are each controlled by a large number of variable, noisy and interacting chemical inputs to the endothelium. The endothelium processes the entire chemical composition to which the cardiovascular system is exposed, carrying out sophisticated computations to determine physiological output. A major challenge faced by the endothelium is the requirement to process an enormous quantity of information held in the overall chemical environment to which the vascular system is exposed. We analyzed hundreds of endothelial cells and show that the endothelium segregates the chemical environment into small components of complementary information streams which are processed in parallel. Chemical stimuli arriving at the endothelium are mapped to different clusters of cells which each generate unique signal patterns. When there is more than one stimulus, cells communicate and combine inputs across information streams to generate new distinct signals. Our results establish the endothelium is a structured,collaborative, sensory network which simplifies the complex environment using separate cell clusters concerned with small distinct aspects of the overall information. These clusters interactively compute signals from the diverse but interrelated chemical inputs. These features permit the endothelium to selectively process separate signals and perform multiple computations in an environment that is noisy and variable