Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy composites

Minty, Ross F. and Yang, Liu and Thomason, James L. (2018) The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. ISSN 1359-835X

Text (Minty-etal-CPA-The-influence-of-hardener-to-epoxy-ratio-on-the-interfacial-strength-in-glass-fibre)
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB)| Preview


    This work seeks to develop a better understanding of the influence that the chemistry of an epoxy thermoset system has on the stress-transfer capability of the fibre-matrix interface. We discuss the correlation between the interfacial shear strength (IFSS) and the properties of the matrix such as glass transition temperature (Tg), storage modulus and linear coefficient of thermal expansion (LCTE). The results indicate that each is strongly dependent on the hardener-to-epoxy ratio and it was found that changes in IFSS can be related to changes in the thermomechanical properties of the matrix. From the results presented it is hypothesized that residual radial compressive stresses at the interface are influenced by the chemistry of the matrix system due to the changes in the properties of the matrix. The combination of these residual stresses with static friction may lead to a potential variation of the interfacial stress-transfer capability in glass-fibre reinforced epoxy composites.