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Abstract 

This work seeks to develop a better understanding of the influence that the chemistry of an 

epoxy thermoset system has on the stress-transfer capability of the fibre-matrix interface. We 

discuss the correlation between the interfacial shear strength (IFSS) and the properties of the 

matrix such as glass transition temperature (Tg), storage modulus and linear coefficient of 

thermal expansion (LCTE). The results indicate that each is strongly dependent on the 

hardener-to-epoxy ratio and it was found that changes in IFSS can be related to changes in 

the thermomechanical properties of the matrix. From the results presented it is hypothesized 

that residual radial compressive stresses at the interface are influenced by the chemistry of the 

matrix system due to the changes in the properties of the matrix. The combination of these 

residual stresses with static friction may lead to a potential variation of the interfacial stress-

transfer capability in glass-fibre reinforced epoxy composites. 

 

Keywords: A Glass Fibres, B Fibre/matrix bond, B Interface/interphase, B 

Residual/internal stress.  



1. Introduction 

Over the past decades there has been a rapid growth in demand for, and development of, 

fibre-reinforced composite materials for use in high performance applications. At the same 

time, it has become increasingly clear that in order to continue optimizing performance then 

it will be necessary to better understand and measure the micro-mechanical parameters that 

control the structure-property relationships within such composites. Composite properties 

result from a combination of the material properties of the fibre and the matrix as well as the 

ability to transfer stresses across the fibre-matrix interface. Although tailoring the stress 

transfer capability is widely recognized as being vital to optimising the performance of the 

final composite, it is routinely reduced to a discussion about improving the ‘adhesion’ 

between the fibre and the matrix. Adhesion represents a simplified term for encompassing the 

multiple complex mechanisms that exist at the interface and contribute to its strength. One 

accepted mechanically measurable value for quantifying fibre-matrix adhesion is the apparent 

interfacial shear strength (IFSS). 

Discussions about the interface in composites typically focus on the chemistry of the matrix 

system and the necessity to maximise the level of chemical bonding between the fibre and the 

matrix in order to optimize the level of ‘adhesion’ between the two [1–6]. However a number 

of authors have also commented on the potential role that shrinkage stresses may have in 

influencing the stress transfer capability of the interface[7–13]. Specifically, that residual 

radial compressive stresses (σR) formed at the interface may be a significant contributor to the 

measured strength of the interface. Thermal compressive radial stresses form during the 

cooling process due to differences in the thermal expansion coefficients of the matrix 

polymer and the reinforcement fibre. Thermosetting matrices also undergo volume change 

during polymerisation known as cure shrinkage. Due to the increase of the glass transition 

temperature (Tg) as thermoset matrix reacts and shrinks it is possible for some level of this 



cure shrinkage to be ‘frozen’ into the system, creating additional residual stresses at the 

interface [14]. 

It is known that glass fibre sizings often utilise chemicals containing unreacted amine and 

epoxy groups to facilitate good adhesion between the glass fibre and epoxy matrix [15]. In 

practice however, the level of sizing applied to a coated fibre may also vary along the length 

of the fibre [15,16]. This has the potential to influence the amine: epoxy ratio at the interface 

and may lead to variations in the formation and performance of the fibre-matrix interface. 

Furthermore, there is a significant weight of opinion [14,17–20] that even if the residual 

stresses at the interface do contribute to the stress transfer capability, then chemistry and 

chemical reactions must also play an active role. Given these two important aspects in debate, 

it was considered necessary to study how they could be interrelated to influence the stress 

transfer capability of the interface. This work will build upon the findings reported in our 

previous study [8]. 

2. Experimental 

2.1 Materials 

Single boron free E-glass fibres coated with either γ-aminopropyltriethoxysilane (APS) or 

glycidoxypropyltrimethoxysilane (GPS) were taken from larger rovings supplied by Owens 

Corning-Vetrotex. The nominal tex was 1200 g/km and the average diameter was 17.5µm for 

both. Araldite® 506 epoxy resin and triethylenetetramine (TETA) were purchased from 

Sigma-Aldrich and used as received. The stoichiometric ratio for the system was calculated 

as 12.0% TETA. The ratios were varied from 4% TETA up to 30% TETA for the APS 

samples and 3.5% TETA up to 30% TETA for the GPS samples. This equated to an amine 

group: epoxy group ratio (R) varying from approximately 0.3 to 3.1 for both APS and GPS 

respectively. The resin mixtures, with different R values, were carefully measured and mixed 



thoroughly before being degassed for approximated 15 minutes. Minute droplets of the resin 

mixture were then applied to a single glass fibre using a thin piece of steel wire. 

Approximately 60 droplets were placed on individual fibres before being transferred to a 

convection oven where they were heated to 60 °C, held isothermally for 1 hour and then 

further heated to 120 °C, being held isothermally for a further 2 hours. The heating rate was 2 

°C/minute for both heating ramps and the samples were left to cool in the oven overnight. 

Prior to testing, all samples were examined under 200x magnification using a Nikon Epiphot 

inverted microscope to obtain values for the fibre diameter (Df) and the fibre length (LE) 

embedded in the resin droplet. 

Samples for the differential scanning calorimetry (DSC), thermomechanical analysis (TMA) 

and dynamic-mechanical analysis (DMA) were prepared together, undergoing the same 

curing conditions that were used for the micro-droplet samples, with 9 different mixture 

ratios analysed. After de-gassing the epoxy resin was poured into a silicon mould and placed 

in a convection oven, producing 5 mm x 5 mm x 5 mm cubes for the TMA and 64 mm x 13 

mm x 3 mm bars for the DMA. The DSC samples were produced by cutting unused TMA 

samples and shaping them into small flat discs. Samples bars for the near-infrared 

spectroscopy (nIR) were produced in the same manner to those for the DMA, with seven 

different R ratios studied. 

2.2 Microbond Technique 

The microbond technique is recognized as being a viable method for studying the apparent 

adhesion between the fibre and the polymer matrix via measurement of the IFSS [21]. This 

mechanically measurable value has been extensively used in past literature to quantify the 

strength of the interface between numerous fibres and polymer systems [7,8,22–25]. The 

apparatus for the test can vary greatly, with different methods for specimen clamping and 



loading published in literature [26–31]. The configuration and development of the microbond 

test rig used in this study has been reported previously [26] and is shown in Figure 1. The rate 

of loading was maintained at 0.1 mm/s throughout the entire study. The load-displacement 

curve for each test was recorded in order to obtain a maximum force (Fmax) at full interfacial 

de-bonding as shown in Figure 2. This value, along with the measured fibre diameter and 

embedded length, was used to estimate the apparent IFSS, τapp, using Equation 1. 

𝜏𝑎𝑝𝑝 =  
𝐹𝑚𝑎𝑥

𝜋𝐷𝑓𝐿𝑒
 

(1) 

2.3 Thermomechanical Analysis 

TMA was performed using a TA Q400 thermo-mechanical analyser, in combination with the 

cooling accessory MCA270 mounted with an expansion probe in accordance with ASTM 

standard E831-12. Experiments were conducted under a nitrogen flow of 50 ml/min. All 

samples were subjected to two heating runs from -10 to 150 °C at 10 °C/min. The cooling 

rate between the first and second run was -20 °C/min. The initial preload applied to the 

specimen was 0.1 N. DSC measurements were conducted using a TA Q20 DSC in 

combination with the cooling accessory RCS90 in accordance to ASTM standard E1356-08. 

A sample disc (15-20 mg) was weighed in small standard aluminium pans, sealed with an 

aluminium lid and the experiment was conducted under a nitrogen flow of 50 ml/min. All 

samples were subjected to two heating runs to account for thermal lagging, going from -10 to 

150 °C at 10 °C/min. The cooling rate between the first and second run was -20 °C/min. 

DMA measurements were conducted using a TA Q800 dynamic-mechanical analyser in 

accordance to ASTM standard D5023-07. The analysis involved a 3-point bending test with 

rectangular shaped specimens held in place at either end whilst the centre underwent 

controlled oscillation, measuring the epoxy polymer’s viscoelastic properties under flexure. 

All samples were subjected to one heating run, going from 30 to 150 °C at 2 °C/min. The 



displacement amplitude was programmed to be 50 µm and the frequency was set at 0.1 Hz. 

The specimen was preloaded with a small force of 0.1 N. 

2.4 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FT-IR) is a widely recognized technique used to 

obtain the infrared spectrum of emission or absorption of a material [32–36]. These spectra 

allow for the molecular structure of the material to be studied.  Near-infrared (nIR) 

spectroscopy was used to analyse different R ratios due to its ability to allow for 

quantification of amine groups within the matrix. The nIR spectra were recorded in 

transmission using an ABB MB160.   

2.5 Scanning Electron Microscopy 

Analysis of de-bonded droplets was carried out using a Hitachi SU6600 scanning electron 

microscope (SEM), with an example shown in Figure 3. A small portion of the droplet is 

shown to have broken away and remained in the original position of the droplet prior to de-

bonding. This portion is known as the meniscus. In order to ensure accuracy of the results the 

size of the remaining meniscus was measured and subtracted from the original measured 

embedded length value for each droplet to give the effective embedded length of the droplet 

before de-bonding. This in turn, was used to correct the IFSS value for each sample. 

3. Results and discussion 

3.1 Effect of amine:epoxy ratio on thermomechanical properties of the matrix 

Thermal analysis was conducted in order to study thermomechanical properties of the matrix 

material such as the matrix linear coefficient of thermal expansion (LCTE), glass transition 

temperature (Tg) and matrix storage modulus. These properties are fundamentally dependent 

on molecular structure of the polymer and can be significantly affected by epoxy matrix R 

ratio. Figure 4 shows a plot of normalised dimension change versus temperature for a 



selected number of the different ratios using the TMA. This plot allows for the evaluation of 

the Tg and LCTE values above and below Tg using the gradients of the curve at that point. It 

is shown in Figure 4 that as the ratio deviates further from the stoichiometric value of R = 

1.0, the rate of dimension change will increase at the same temperatures. Figures 5 and 6 

show the values for the LCTE above and below Tg plotted against R respectively. In both 

cases the LCTE is shown to be influenced by the chemistry of the system. Above Tg, the 

matrix is shown to possess the smallest LCTE value at the stoichiometric value, with the 

LCTE values increasing as the ratio deviates from stoichiometry. Below Tg a maximum is 

shown at around R = 0.5 before levelling out at the stoichiometric point and remaining fairly 

constant as more hardener was applied. The results in Figure 5 are expected since the 

maximum density of crosslinks in the molecular structure will form at the stoichiometric 

value [37]. Figure 6 illustrates that at low temperatures, there does not appear to be 

significant variation in the LCTE value apart from at a ratio of R ≈ 0.5. 

Figure 7 shows DSC normalised heat flow versus temperature plots for several of the 

different R ratios. It can be seen that a distinct drop in Tg occurred for R ratios with both 

excess epoxy and excess hardener respectively. Figure 8 shows the average values for Tg as 

the R ratio was varied. A maximum is observed slightly above the stoichiometric point, in the 

range of 1.1<R<1.3. A clear correlation can be seen between the results produced by each of 

the techniques. For each data set, Tg tends to decrease as the R value deviates from the 

stoichiometric ratio. Figure 9 presents the DMA storage modulus of the matrix against 

temperature. It is shown that the epoxy modulus at stoichiometric ratio has the maximum 

values compared to the other ratios. At each temperature, the matrix modulus decreases as the 

ratio deviates further from the stoichiometric value. It is also noticed that excess epoxy ratios 

(R < 1) appears to cause more modulus reduction compared to that in the case of excess 

hardener (R > 1).  



3.2 Effect of amine:epoxy ratio on IFSS 

The results for the IFSS versus R ratio are shown in Figure 10. It can be seen that the IFSS 

values are clearly influenced by the R ratio for both silanes. Both sets of data show a strong 

correlation with each other, particularly at the extreme ratio values. A maximum in IFSS is 

shown to occur near the stoichiometric value (R = 1) for the APS sized fibres. For these 

samples it is clear that moving away from the stoichiometric ratio in either direction results in 

reduced IFSS, with a sudden drop in the IFSS when R < 0.5. For 0.5<R<2 the changing ratio 

causes relatively small variations in the IFSS.  For the GPS fibres a maximum is shown to 

occur at a ratio below the stoichiometric value (R ≈ 0.6) before decreasing as the ratio 

deviated from this value. It is noticed that IFSS seems to drop faster for both silanes when 

there is a large excess of epoxy when compared to ratios with excess amine. 

The results in Figure 8 and Figure 10 show that there is a strong correlation between the IFSS 

of the APS fibres and the Tg of the epoxy matrix. In both cases, the maximum value occurred 

near the stoichiometric point and these properties decrease as the R ratio deviated from this 

ideal ratio. Of particular interest is both Tg and IFSS drop away steeply at R<0.5. The similar 

effect of mix ratio on the Tg and the IFSS suggests a linear relationship between them. Figure 

11 presents a plot of IFSS against Tg and it shows indeed that there seems to be a strong 

linear dependence of IFSS on the matrix Tg. 

The dependence of the IFSS with the R ratio may be explained by chemical bonding to some 

degree [3,38,39]. For ratios containing excess epoxy (R<1), due to the lack of amine in the 

polymer system, it would be expected that more reactive epoxy groups would be available to 

bond with the reactive amine groups provided by the silane. This would create more covalent 

bonds across the interface. However, the lack of amine would also lead the system to be 

unable to form a full-crosslinked network. This would result in less restrained, bulky groups 



forming at the end of epoxidic chain, increasing polymer free volume and decreasing key 

mechanical properties of the matrix [40–42]. The sudden drastic drop shown at R < 0.5 may 

represent a critical point where there were not enough reactive amine groups within the 

matrix system to produce a strong crosslinked structure. This would leave significant levels 

of unreacted epoxy groups.  

To investigate this, near-infrared analysis (nIR) was conducted on cured samples of the epoxy 

system with different R ratios. This allowed for quantitative analysis of the unreacted 

components left within the matrix system after curing. An excess of unreacted epoxy groups 

is shown by the downward peak at 4530 cm
-1

 [34] in Figure 12 for samples where R < 1.0 . 

For ratios with excess amine (R > 1), the reactive epoxy groups would statistically be less 

likely to bond with the amines provided by the silane due to the abundance of free primary 

amines already present within the matrix system, thus resulting in fewer bonds forming 

across the interface. For these ratios the curing reaction would also be dominated by the 

primary amines, with little secondary amine bonding, resulting in a more branched polymer 

matrix structure. This would result in significant levels of unreacted secondary amines within 

the system. nIR was used to confirm this as shown by the downward peak at 6460 cm
-1

 [34] 

in Figure 13, with the peak increasing as R increased. Depending on the R ratio it was also 

possible to have unreacted primary amine within the matrix as shown by the downward peak 

in Figure 14. This abundance of unreacted molecules as well as the branched structure would  

increase the polymer free volume due to the poor packing ability of the amine molecule, 

again leading to a decrease in the Tg [43,44].  However, we would expect the negative 

gradient of the IFSS curve to be larger for R > 1 than for R < 1, since in theory the number of 

bonds formed at the interface would be expected to drop as more amine was added to the 

system. Yet Figure 10 shows this to not be the case, with performance for R > 1 shown to 

maintain higher values for IFSS than for R < 1 for both silanes. This suggests that the R ratio 



may also influence other adhesion mechanisms. The instance of a γ-APS coated fibre 

producing a strong interface under conditions where chemical bonding through the amino 

group should not be optimized has been discussed before, suggesting that there are indeed 

other significant adhesion mechanisms contributing to the IFSS [45].  

Another potential explanation is that the residual radial compressive stresses (σR) formed 

during the curing process are being influenced by the properties of the matrix. For instance, 

the decrease in the modulus of the matrix and Tg shown in Figures 8 and 9 would lead to less 

residual stress at the interface.  It was felt necessary to study this hypothesis to confirm its 

accuracy. 

3.3 Effect of amine:epoxy ratio on residual thermal stress 

Several models have previously been proposed [9–13] to quantify the formation of the 

thermal residual stresses at the interface due to differences in the coefficients of expansion of 

the matrix and fibre. Nairn [9] proposed a model to calculate the σR that accounted for the 

effects of differences in the axial and transverse fibre properties: 

𝜎𝑅 =  𝐴1(1 −
𝑏2

𝑟2
) 

(2) 

where A1 is the result of the calculation shown in Equation 3. 

𝐴1 =  [
𝑋11 𝑋12

𝑋21 𝑋22
] [

𝐴1

𝐴3
] =  [

(𝛼𝑚 − 𝛼𝑓𝑇)∆𝑇

(𝛼𝑚 − 𝛼𝑓𝐿)∆𝑇
] 

(3) 

Of the variables presented, b is a function of the fibre volume ratio (Vf), r is the radius of the 

fibre, α is the linear coefficient of thermal expansion, ∆T represents the difference between 

the stress-free temperature (Ts) and the testing temperature (Tt) and f, m, L and T are 

subscripts for the fibre, matrix, longitudinal and transverse respectively. From the result of 

the model in Equation 3 we can see that thermal residual stresses are directly influenced by 



changes in ∆T. For thermosetting systems, the stress-free temperature is accepted as being the 

glass transition temperature Tg and hence the results for Tg presented in Figure 8 indicate that 

the level of residual stress should vary with the chemistry of the system as well as the testing 

temperature. Other key variables such as the matrix modulus and linear expansion coefficient 

of the matrix are also clearly dependent on both temperature and matrix chemistry as shown 

in Figures 4-6. Glass fibre properties are also temperature dependent, but to a much lesser 

degree, and can be considered constant for the temperature range explored in this study, with 

αf = 6.0 x10
-6

 °C
-1

 used throughout this study [8]. 

Using Equation 3 and the above data, the magnitude of the interfacial radial thermal residual 

compressive stresses at room temperature were calculated for different ratios. These values 

were then used in Equation 4 with a coefficient of static friction coefficient of µs = 0.6 [8,46] 

to obtain the residual stress contribution to the interfacial stress transfer capability (R). The 

results are plotted in Figure 15.  

𝜏𝑅 =  𝜇𝜎𝑅 (4) 

It can be seen that as hardener was added to the epoxy system, the thermal stress contribution 

value changed, with a peak occurring at the stoichiometric point. Notably as the ratio 

deviated further from the stoichiometric value this contribution value was shown to decrease 

in a similar manner to that shown for the IFSS value in Figure 10. This correlation is 

expanded upon in Figure 16, where the IFSS value is plotted against the respective thermal 

residual stress contribution. We can see that similar to Figure 11, as the level of thermal 

residual stress at the interface was increased, the IFSS also increased. However, despite the 

clear correlation shown in Figure 16 we can see that this contribution by the thermal residual 

stresses still only represents about 20% of the final IFSS value. The slight decreases in IFSS 

shown in Figure 10 for R > 0.5 may possibly be attributed to the decrease in size of the 



thermal residual stresses shown in Figure 15. For R < 0.5 it appears that multiple adhesion 

mechanisms must be influenced. As previously discussed the lack of amine at low R values 

may prevent the formation of a strong crosslinked structure thus resulting in a notable drop in 

performance for multiple thermomechanical properties associated with the strength of the 

interface. Another potential contributing factor may be the variation in residual stresses 

formed during the curing process due to the chemical curing reaction. These stresses are 

known as cure shrinkage stresses. Cure shrinkage is known to occur during the thermoset 

reaction process, however residual stress only builds up for the cure shrinkage which occurs 

after gelation due to the polymer structure becoming increasingly rigid, resulting in the 

stresses being unable to relax away [8,14,17,47,48]. Thus, there is potential for different 

levels of residual stress due to cure shrinkage forming during the curing process. It has been 

suggested in the past that residual cure shrinkage stresses may contribute significantly more 

than residual thermal stresses [8,14] and thus any changes in cure shrinkage stresses may 

significantly impact the stress transfer capability of the interface. This is the focus of another 

paper in preparation. Another point for future study will be to investigate the influence of the 

R ratio on the fracture toughness of the matrix. Fracture toughness, combined with interfacial 

adhesion, has a profound effect on the nature of fibre pull-out and as such is relevant to fully 

understanding the role of the R ratio in defining the properties of the interface. 

In practice, the findings discussed in this paper highlight that poor mixing at the sub-micron 

level may lead to local variation of important matrix properties such as Tg and LCTE along 

the entire length of the fibre. This would change the performance of the interface and as such 

the final composite performance as well. Furthermore, the potential for local changes in the R 

ratio due to differences in the level of sizing applied to the fibre, along with its formulation, 

would clearly influence the formation and magnitude of the residual stresses located at the 

interface. Based on the results presented, this could significantly affect the stress transfer 



capability of the interface if the R ratio deviated significantly from the stoichiometric value. 

This would suggest that sizings may play a broader role than promoting chemical bonding 

and protecting the fibre surface. 

4. Conclusions 

The results presented in this paper illustrate that the hardener-to-epoxy ratio can clearly 

influence multiple thermomechanical properties associated with defining the strength of the 

interface. The values for the IFSS, Tg, storage modulus and LCTE were shown to all be 

significantly influenced by the chemistry of the amine cured matrix, with notable drops in 

performance shown for each property when there was large degree of excess epoxy or excess 

amine in the system. Overall, the variation in these properties was taken as support for the 

hardener-to-epoxy ratio potentially not only influencing the level of chemical bonds forming 

between the fibre and matrix but also the formation of thermal residual radial compressive 

stresses located at the interface. It was shown that these residual stresses were influenced by 

the hardener-to-epoxy ratio and correlated with the values for IFSS, decreasing in size as the 

chemistry of the matrix deviated further from the stoichiometric value. However, the 

contribution of these thermal stresses represented only a small portion of the interface 

strength and cannot explain the sharp drop noted for excess epoxy ratios where R < 0.5. It is 

suggested that a larger residual stress contribution to the IFSS in these systems could be 

provided by the continued cure shrinkage of the matrix after gelation. One practical 

conclusion from the results presented here is that performance of the interface in thermoset 

composites is strongly related to the chemistry of the polymer matrix adjacent to that 

interface. Fibre sizings typically contain chemical reactive groups similar to the polymer 

matrices in their composites. Hence it is also possible that key interface properties of a glass 

fibre-reinforced epoxy composite may vary along the entire length of the embedded fibre. 

Small changes may result in small variations in the level of adhesion with minimum impact 



on performance. However, if the variation from the stoichiometric value is large enough then 

there may be potential for a significant impact on performance of the final composite 

material. 
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Figure Captions 

 

Figure 1. Photo and schematic of microbond test setup  

Figure 2. Load-displacement curve for a successful de-bond. 

Figure 3. SEM image of de-bonded droplet with meniscus highlighted. 

Figure 4. Normalised dimension change versus temperature plot. 

Figure 5. Coefficient of thermal expansion above Tg versus amine:epoxy group ratio.  Figure 

6. Coefficient of thermal expansion below Tg versus amine:epoxy group ratio. 

Figure 7. Normalised heat flow versus temperature plot. 



Figure 8. Glass transition temperature Tg versus amine:epoxy group ratio plot. 

Figure 9. Storage modulus versus temperature ratio plot. 

Figure 10. IFSS versus amine:epoxy group ratio plot. 

Figure 11. IFSS versus glass transition temperature Tg. 

Figure 12.  nIR comparison plot of the 2nd derivatives for different R ratios focusing on the 

downward epoxy group (4530cm
-1

). 

Figure 13.  nIR comparison plot of the 2nd derivatives for different R ratios focusing on the 

downward secondary amine peak (6460 cm
-1

). 

Figure 14.  nIR comparison plot of the 2nd derivatives for different R ratios focusing on the 

downward primary amine peak (4930 cm
-1

). 

Figure 15. Interfacial thermal residual stress contribution τR versus amine group: epoxy group 

ratio. 

Figure 16. IFSS versus interfacial thermal residual stress contribution τR. 

 

 

 

 

  



 

Figure 1. Photo and schematic of microbond test setup.  

 

 

Figure 2. Load-displacement curve for a successful de-bond. 
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Figure 3. SEM image of debonded droplet with meniscus highlighted. 

 

 
 

Figure 4. Normalised dimension change versus temperature plot. 
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Figure 5. Coefficient of thermal expansion above Tg versus amine:epoxy group ratio.   

 

Figure 6. Coefficient of thermal expansion below Tg versus amine:epoxy group ratio. 
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Figure 7. Normalised heat flow versus temperature plot. 

 

Figure 8. Glass transition temperature Tg versus amine:epoxy group ratio plot. 
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Figure 9. Storage modulus versus temperature ratio plot. 

 

Figure 10. IFSS versus amine:epoxy group ratio for APS and GPS sized fibres. 
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Figure 11. IFSS versus glass transition temperature Tg. 

 

Figure 12.  nIR comparison plot of the 2nd derivatives for different R group ratios focusing 

on the downward epoxy group peak (4530cm
-1

). 
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Figure 13.  nIR comparison plot of the 2nd derivatives for different R ratios focusing on the 

downward secondary amine peak (6460 cm
-1

). 

Figure 14.  nIR comparison plot of the 2nd derivatives for different R ratios focusing on the 

downward primary amine peak (4930 cm
-1

). 
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Figure 15. Interfacial thermal residual stress contribution τR versus R ratio. 

 

Figure 16. IFSS versus interfacial thermal residual stress contribution τR. 
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