Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Modelling impact angle effects on erosion-corrosion of pure metals

Jana, B. and Stack, M.M. (2005) Modelling impact angle effects on erosion-corrosion of pure metals. Wear, 259 (1-6). pp. 243-255. ISSN 0043-1648

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

In studies of the effect of erosion-corrosion in aqueous conditions, impact angle effects are frequently ignored. This is despite the fact that erosion has a function of impact angle and can vary frequently depending on the nature of particle/target interactions. In such cases, the impact angle effects may change depending on whether the eroding particle encounters a metallic surface or an oxide film. This work describes extension of a model already developed for erosion-corrosion of Fe to a range of pure metals, Ni, Cu, and Al at a range of pHs. The impact angle effects were estimated based on models from the solid particle erosion literature. The corrosion stability regimes were identified using Pourbaix diagrams for various pure metals. The results were used to generate erosion-corrosion mechanism maps showing the differences in the impact angle effects at various pHs for the pure metals. The changes in wastage regime for the various pure metals as a function of impact angle and pH were demonstrated. Materials performance maps were generated using such models showing how wastage rates may be optimised for exposure to impact angle, pH and electrochemical potential.