Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites

Czél, Gergely and Jalalvand, Meisam and Wisnom, Michael R. (2016) Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites. Composites Part A: Applied Science and Manufacturing, 91. pp. 436-447. ISSN 1359-835X

[img]
Preview
Text (Czel-etal-Composites-2016-eliminating-stress-concentrations-in-tensile-and-compressive-testing-of-unidirectional-composites)
Czel_etal_Composites_2016_eliminating_stress_concentrations_in_tensile_and_compressive_testing_of_unidirectional_composites.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

Two novel approaches are proposed for elimination of stress concentrations in tensile and compressive testing of unidirectional carbon/epoxy composites. An interlayer hybrid specimen type is proposed for tensile testing. The presented finite element study indicated that the outer continuous glass/epoxy plies suppress the stress concentrations at the grips and protect the central carbon/epoxy plies from premature failure, eliminating the need for end-tabs. The test results confirmed the benefits of the hybrid specimens by generating consistent gauge-section failures in tension. The developed hybrid four point bending specimen type and strain evaluation method were verified and applied successfully to determine the compressive failure strain of three different grade carbon/epoxy composite prepregs. Stable failure and fragmentation of the high and ultra-high modulus unidirectional carbon/epoxy plies were reported. The high strength carbon/epoxy plies exhibited catastrophic failure at a significantly higher compressive strain than normally observed.